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What is the z-transform?

X(z) = i rn|]z~", 2z € ROC

n=——oo

1
xn| = o jch(z)z”_ldz, C € ROC

The z-transform is a function X (z)
along with a region of convergence (ROC).

The ROC is the set of points in the z-plane where

X (z) is finite, i.e. where > " x[n]z~™ converges.




What is the z-transform?

It’s a function defined over the z-plane.

X (2)]
X (2)]

Re{z}
Im {z}

(Plots attributed to Oktay Alkin)

Re{z}
Im {z}

The mesh is | X (2)].

The red line is the unit circle {2z : |z| =1} = {2z : z = 727/}

The blue line is X (2)|,_.j2rr = X (e7277).



How is the z-transform related to the DTFT?

Substitute z = re/?2™/ into z-transform definition.

[X(z) = X(freﬂﬂ)\v

O O

Z z[n]r= e 7*T™I" = DTFT{z[n|r "}
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How is the z-transform related to the DTFT?

Substitute z = re/?2™/ into z-transform definition.

[X(z) = X(freﬂﬂ)\v

Z rn|z™" Z z[n]r="e %™ = DTFT{z[n|r "}

n=—uoo n——oo A A




How is the z-transform related to the DTFT?

Substitute z = re/?2™/ into z-transform definition.

[X(z) = X(mj%f)\v

=

O

) zln)

n=——~oo

T

—ne—j2wfn

= DTFT{zn]r "}

A

unit circle

The DTFT is the z-transform evaluated on the unit circle.



How is the z-transform related to the DTFT?

The DTFT is the z-transform
evaluated on the unit circle.
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(Plots attributed to Oktay Alkin)



How is the z-transform related to the DTFT?

The DTFT is the z-transform
evaluated on the unit circle.
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r(n] = a"uln|, la] <1
X(f) _ i&ne—j%rfn _ 1
DTFT — ‘ - 1 — ge—J2nf
z-Transform X (z) = i a"z " = : , ezl <1
1 —az=!




z-Transform, DTFT, DFT Relations

Let x[n| be a length L signal and let N > L.
Now consider three transformations.




z-Transform, DTFT, DFT Relations

The DTFT is the z-transform evaluated on the unit circle.

The DFT is the z-transform evaluated at N uniformly spaced
points around the unit circle.

unit circle |

(blue) \

uniformly spaced
points (red)

Imag(z)

Example: N =10 =

Real(z)



Convergence and Regions of Convergence

DTEFT

o Absolutely summable: ) |z[n]] < oo =  X(f) converges uniformly
to a continuous (differentiable) function

e Energy signals: > |z[n]|? < co =  X(f) converges in the mean-
square and has discontinuities

e Power signals: limpy_, Wlﬂ ij:_N lz[n]]? < oo = X(f) does not
converge at some frequencies (Dirac delta functions)

DFT

e Finite length signals = always converges

Z-Transform

—n

o Converges for all z = re/?™ where x[n]r~" is absolutely summable.

e Signals that do not have z-transforms: e/27/0™ periodic signals, constants,
a", etc.



Convergence and Regions of Convergence

O O
X(z) = Z rn|z™" = Z x[n]r— e 2T
nN=——oo nN=——oo
The set of points where this sum converges
is the region of convergence (ROC).

@)

X (2)] = Z LU[n]T_ne_‘?%fn Questions about
n=—00 convergence for a given z
OO . depend only on the radius

< Z xn|r—" |6_327Tf”| but not the angle.

nN——00 =1
00 This means that ROCs are
— Z \x[n]r_n| < 00 circular.

n=——oo



Convergence and Regions of Convergence

The ROC is a connected region.
The ROC may not contain poles.

In general, the ROC is either outside a circle, inside a circle, or in an
annular region.

2| > |al z| < || a| < |z < o]
outside a circle inside a circle in an annular region
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(pictures from Wikipedia)



Z-Transforms and ROCs by Example

z|n| = a"u[n| (causal)
- 1
X(2) = Ny Jaz7l <1 « <
&)= " = e ol < J2
2| > |a]

outside a circle
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Z-Transforms and ROCs by Example

r(n| = anu[n + 5] (non-causal right-sided)

_525

Z a”z n_l—az—1’| az <1 & |a| <7

n—-—95
Notice that 2 = oo 1s also excluded

because 1t makes the numerator infinite.
So the ROC is |a| < |z] < 0.

— | a| < |z| < o0
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Z-Transforms and ROCs by Example

—a"u|—n — 1] (anti-causal)
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Z-Transforms and ROCs by Example

r(n] = —a"u[-n +4] (nonanti-causal left-sided)
4 o0
X(z) =— Z a2t = — Z a "™
n=—oo m=—4
P! 5 55

=TT 1_&Z_l,|an_1z| <1l << |z]<]|a

Notice that z = 0 1s also excluded

because it makes the numerator infinite.

So the ROC is 0 < |z| < |al.
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Convergence and Regions of Convergence

The combined ROC is |a| < |z| < |b].
Requires that |a| < [b].

in an annular region
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Convergence and Regions of Convergence

rln] =46[n] +— X(z)=1, ROC = entire z-plane
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Convergence and Regions of Convergence

r|n] = a" (un] —uln — M]|)  (causal & finite length)

M—1
X(z)= Y a"e " =1+4az " +a2 2+ aV (N
n=0 \ /
1 — (az— )Y
— ( _3 , |z >0 Cannot put z =
1l —az \ into these terms.
14 | | | This is the entire z-

12| * plane except the origin.
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Convergence and Regions of Convergence

rin| = a"(un + N| —u[n — M]) (noncausal & finite length)
M—1
T \|Z| < 0 /

—1\N _ —1\M |z| >0
_ oz i @27 )7 0 < o] < oo
— Az T

This is the entire z-
| | | plane exceptz =0
12y * and 7 = o0.
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What can the ROC tell us? Stability & DTFT existence

B OOODDODD
OO0 000000

a=08
stable

dex

. S OOOODL o 808 .
T \AAAAAAAAAAAAAAAAAAAAY

BOBOODOODD
OO0 000000

BB OBODDD

a=1.1

. unstable

vvvvvvvvvv

Imag(2)

Imag(2)

-
\_

: ROC={z

Hlzl > 1}

s ROC={z:

unit circle (UC)={z: |z|] =1}

X(2)l2

For DTFT to exist, ROC must include UC.

\

:ej27rf

UC C ROC = DTFT exists
Stable © Summable < DTFT exists

Z |z[n]| < oo

UC € ROC = DTFT does not exist

Unstable sequences have z-transforms

but not DTFTs.

UC € ROC = DTFT does not exist



How can an unstable signal have a z-transform?

-3 (

O

)” o—i2mfn

O
X(z) = Z a2z " = Z ar e I2TIn
n=0

S U

z = red?™/

n=0

Even if a > 1 so that a™ “blows up”,
r may be chosen so that (%)n decays.

This requires that r >
why the ROC is {z : |z
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Why the ROC is so important

causal anti-causal

These two sequences [HHH
| have the same X(z) but
Olmmmnm

/\ / :—au n—l]

\zl > \aI z| < a
outside a circle X _ inside fﬂ circle
(2) = 1 — az_l
Always specify X(z)
and ROC.




Region of convergence

Q: Compute the z-transtorm for the sequence

A: This is easy because we already know the
transforms of the two parts:

1\" ) 1
— u|mn —
2 1 — 221

2

1\" 1
— (——) ul-n—1 — —,
3 1 —+ gZ_l

Conclusion: The z-transform does not exist,
because the ROCs do not overlap.

1 1
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Poles and Zeros

= (2) e ()

X(Z) B 1 | 1 numerator polynomial
2 3 zeros = < 0, o >
1 - —
_ 22(2— 15) ’
— 1 1
(z—3) (2 +3)
poles are roots of
denominator polynomial
é )
To find poles and zeros, poles = ¢ 17 L \
combine terms and express as 203,

rational function of z.



Poles and Zeros in Matlab

1 1
X(z) = |
(%) 1— 2271 1+ sz71
_1_%2—1_%2—2e ,a = [1, -1/6, -1/61;
/zplane(b,a) ;
/ / |
« 0O x ‘ This is called a
5 pole-zero plot.
J/

Real Part



Causal & Stable LTI Systems

unit circle (UC)={z: |z|] =1}

2=08) e X(f) = X(2)],2ons
Cstable 0 (7] | .
| &/ For DTFT to exist, ROC must include UC.
.
2 — 1 unstable X(z) is causal = ROC lies
L T outside the outermost pole
\ X(z) is stable = ROC must
2| Roc=(z 1zl > 1) include the unit circle
If X(z) is causal and stable,
a:.l.l R then all poles must lie inside
. unstable il

\ the unit circle.

] HWHHHH - mesteifal>
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Imag(z)
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-0.2

-0.4

-0.6

-0.8

One X(z) may correspond to many x[7]

1
ROC ‘Z‘ > 5

The ROC is outside each pole, so each
pole contributes a causal term to x[n].

X[n] is causal (right-sided) signal.



One X(z) may correspond to many x[7]

ROC: % < || <% zln] = - (%)nu[—n — 1]+ <—%>HUM

The ROC is inside the pole at 1/2, so this
pole contributes an anti-causal term to x[n].

0.4

| @

-0.4

Imag(z)

The ROC is outside the pole at -1/3, so this
pole contributes a causal term to x[n].

N/

-0.6

x[n] is a two-sided signal.

1
-
-

-0.5 0 0.5



One X(z) may correspond to many x[7]

\4

woc<t ol =—(3) wn-1-(=3) wlon-1

The ROC is inside each pole, so each pole
contributes an anti-causal term to x[n].

0.8

0.6

04

0.2

Imag(z)

X[n] is an anti-causal (left-sided) signal.

-0.8




Another z-transform example

Zeros at zp = aej%
(causal finite-length signal) for k = O, 1, ik ,M — 1
zn] = a" (uln| — uln — M])
M—1 v
1 — gM,—M 1 M M
X(Z) _ Z a s " — a - < S Z a
— 1 —az— /z( -1 2 T a
ROC: |z| > 0 (M-1)th order pole at z=a

pole at z=0

0.8
0.6

04

/pole—zero cancellation at z=a
(a=0.8 and N=10)

0.2

Imag(z)
o

-0.2

-0.4

ROC is entire z-plane
except for the origin.

-0.6

-0.8




Another z-transform example

x _M_l no—m L1—=aYz"M 1 MM
(Z)_z—:oa © T T T M-y L g

Two ways to enter this into Matlab:
M—1
num = a.*0:M-1]; X(z) = Z az

’ \ n=0
den = 1;

~ 1 tar a2, 20 ... 0 gM-1,~ (M=)

num = [1, zeros(1,M-1), -a*M]; \

den =1, -a];

n  l1—a
(e

MZ_M




Table 3.1 (page 110) Common z-Transform Pairs

TABLE3.1 SOME COMMON z-TRANSFORM PAIRS
Sequence Transform ROC
1. 8[n] 1 All z
1
2. uln] = lz| > 1
3. —u[-n-—-1] ! |z| <1
: g
4. §[n — m] " All z except 0 (if m > 0)
or oo (if m < 0)
n 1
5. a"uln] g 12| > la|
1
6. —a"u[—n—1] g 12| < |al
-1
az
7. na"u[n) 0 —ac- 17 12| > |al
-1
8. —na"ul—n — 1] 7 — = 12| < laf
1 — [coswg]z™!
9. 1
[cos wonjuln] 1 —[2coswplz~! + 272 S
. [sin wo]Z'—1
10. 1
[sin won]u(n] T Roosaolz—T + 22 |z} >
1 —[rcoswo)z™!
11. [r" cos won]u[n] T~ [2r coswolz—1 + 1222 |z| > r
, [r sin wg)z™!
12. [r"
[r" sin won]u(n] 1= [2r coswolz— + 1222 (2| > r
a", 0<n<N-1, 1-a¥zV
13. {0, otherwise 1—az! Il >0

Note what is missing
from the table:
everlasting sin, cos, exp.

These signals do not
have z-transforms.



Table 3.2 (page 132) Z-Transform Properties

TABLE 3.2 SOME z-TRANSFORM PROPERTIES
Section
Reference Sequence Transform ROC
x[n] X(2) Ry
X1 [n] XI(Z) RX|
x2[n] X2(2) Rx,
34.1 axy[n] + bxz[n] aX1(2) + bX2(2) Contains Ry, N Ry,
3.4.2 x[n — ngp] 7" X(2) Ry, except for the possible
addition or deletion of
the origin or oo
3.4.3 zpx([n] X(z/z0) |zo| Rx
3.4.4 nx|(n] —zdij(z) R, except for the possible
¢ addition or deletion of
the origin or oo
3.4.5 x*[n] X*(z*%) Rx
Re{x[n]} -;—[X(z) + X*(z")] Contains R,
Jmix[n]} %[X(z) — X*(z*)] Contains R,
3.4.6 x*[—n] X*(1/z*) 1/ Ry
347 x1[n] * x2[n] X1(2) X2(2) Contains Ry, N Ry,
3.4.8 Initial-value theorem:

x[n] =0, n<0 lim X(z) = x[0]

—00

These are easy
to derive, but

take care of the

ROCs.



Initial & Final Value Theorems

Initial Value Theorem: If z|n| is causal, then

lim X (z) = x/0].

Z—> 00

Final Value Theorem: If x|n| is causal, then

lim z[n] = lim(1 — 27X ().

n— 00 z—1



Impulse Response and Transfer Functions

The z-transform of the impulse response h|n)
is the transfer function H(z).

hn]=6n—d +— H(z)=z"¢

whole z-plane, d =0, (identity system)
ROC : ¢ |z] > 0, d > 0, (delay)
z| <0, d < 0, (advance)

x[n]—{ H(z) — y[n] x[nl— z7¢ —y[n] =x[n—d]

These are common examples of signal processing block diagrams.



Transfer Functions of Difference Equations (LTI Systems)

Time-shift property: z[n —d] <<= X(z)z ¢
N
Difference eqn.: Z ary|n — Z brx|n —
k=0
N

Take z-transform: Z akz_kY Z bkz_kX
k=0



Transfer Functions of Difference Equations (LTI Systems)

Time-shift property: z[n —d| <= X(2)z
N M

Difference eqn.: Z aryln — k| = Z brx|n — k|

k=0 A& k=0 \v
N M
2




Transfer Functions of Difference Equations (LTI Systems)

Time-shift property: z[n —d| <= X(2)z
N M

Difference eqn.: Z aryln — k| = Z brx|n — k|

k=0 A& k=0 \v
N M
2

Solve for H(z): H(z) = — —

Given a difference equation, the transfer function H(z) may be written
down by inspection.

Given a rational transfer function H(z)=B(z)/A(z), the difference
equation may be written down by inspection.



Transfer Functions of Difference Equations (LTI Systems)

definition (1) (2) (3)

(1) Factor out by from numerator and ag from denominator
(2) Factor out 2~ from numerator and 2= from denominator
(3) Factor resulting polynomials

Roots of numerator polynomial are zeros z, k=0,1,--- , M
Roots of denominator polynomial are poles pp, £k =0,1,--- | N
max{0, N — M} zeros at z =0 (if N > M)

max{0, M — N} poles at z =0 (if M > N)

Poles or zeros may also occur at z = oc

Poles at z = 00 if X(00) = ¢

Zeros at z = oo if X(0) = oc

Equal numbers of poles and zeros (counting z = 00)




Transfer Functions of Difference Equations (LTI Systems)

There are M finite zeros and N finite poles.



Inverse Z-Transform

Fair and Square Computation of Inverse
Z-Transforms of Rational Functions

Marcos Vicente Moreira and Jodao Carlos Basilio

TABLE I

INVERSE Z-TRANSFORM FOR THE GENERAL TERMS IN PARTIAL-FRACTION EXPANSION

Type of poles Term Inverse Z-transform

Single /multiple poles at z = 0 z% Ad(k — ngp)

Single real pole zfiza Ad* k>0

Multiple real pole v fza)q v fl)!ak—qﬂ [192(k — i),k > 0
Single complex poles T ile;:fwo) T fe;eji.zwo) ,A,a € Ry 2Aa” cos(wok + ¢),k > 0
Multiple complex poles Ac%z A% JAja € Ry 2 (q fl)!ak_qﬂ cos [wo(k — g +1) +¢)

(z — aeIwo)q

(z — ae—Iwo)q

x [T¢2g (k =),k >0

Paper is linked on “resources” tab of class web site.
Expand H(z) in partial fraction expansion, then write down h[n].



Inverse Z-Transform via Computer

You have already encountered PFE in calculus and in
continuous-time signals and systems. This semester you are
going to learn how to do PFE on computer (Matlab).

>> help
residuez Z-transform partial-fraction expansion.
[R,P,K] = residuez(B,A) finds the residues, poles and direct terms
of the partial-fraction expansion of B(z)/A(z),

B and A are the numerator and denominator polynomial coefficients,
respectively, in ascending powers of z”~(-1). R and P are column
vectors containing the residues and poles, respectively. K contains

the direct terms in a row vector. The number of poles 1is

n = length(A)-1 = length(R) = length(P)
The direct term coefficient vector is empty if length(B) < length(A);
otherwise,

length(K) = length(B)-1length(A)+1




Inverse Z-Transform via Computer

" Note: In what follows, we are always assuming that the ROC is the
region outside the outermost pole. The inverse z-transform, i.e.
the impulse response h[n], will be a causal sequence.

>> help
residuez Z-transform partial-fraction expansion.
[R,P,K] = residuez(B,A) finds the residues, poles and direct terms
of the partial-fraction expansion of B(z)/A(z),

B and A are the humerator and denominator polynomial coefficients,
respectively, in|ascending powers of zA(-1). R and P are column
vectors containing the residues and poles, respectively. K contains

the direct terms |{in a row vector. The number of poles 1is

n = length(A)41 = length(R) = length(P)
The direct term cpefficient vector is empty\if length(B) < length(A);
otherwise,

length(K) = length(B)-1length(A)+1




Inverse Z-Transform via Computer

" Note: In what follows, we are always assuming that the ROC is the
region outside the outermost pole. The inverse z-transform, i.e.
the impulse response h[n], will be a causal sequence.

>> help
residuez Z-transform partial-fraction expansion.
[R,P,K] = residuez(B,A) finds the residues, poles and direct terms
of the partial-fraction expansion of B(z)/A(z),

B and A are the numerator and denominatop” polynomial Loefficients,
respectively, in ascending powers of z”A-1). R and P are column
vectors containing the residues and pgles, respecti¥ely. K contains

the direct terms in a row vector. 7Jhe number of poles is

n = length(A)-1 = length(R) = 1éngth(P)
The direct term coefficient vectgr is empty if léngth(B) < length(A);
otherwise,

length(K) = length(B)-1length(A)+1




Inverse Z-Transform Components: 1st Order Poles




Convergence and Regions of Convergence

If P(j) = ... = P(j+m-1) is a pole of multiplicity m, then the
expansion includes terms of the form
R(j) R(j+1)

[B,A] = residuez(R,P,K) converts the partial-fraction expansion back
to B/A form.

hin] =(R(j)[P()] uln]+R(j + 1)(n + 1)[P(5)]"uln])

In this class, we will only encounter second order poles,
l.e. poles with multiplicity 2.

For higher order poles, see the paper ...

Fair and Square Computation of Inverse
Z-Transforms of Rational Functions

Marcos Vicente Moreira and Jodao Carlos Basilio



Inverse Z-Transform Components: 2nd Order Poles




Inverse Z-Transform: Complex Conjugate Pair of Poles

One other common case is a pair of complex conjugate poles.

A A
o 1—}?2_1 | 1_p>|<Z—1
hin] = (Ap" + A*(p")") u[n]

= 2| A|r"™ cos(2m fon + 0)u|n]

H(z)

A= |Ale??, p=rel?Tio



Inverse Z-Transform Components: Complex Conjugate Pole Pairs




Some

Useful Matlab Functions

polynomial multiplication: conv([1,-1],[1,-1/2]) = [1, -1.5, 0.5]
(1—2"11-052"1)=1-1.5z""4+0.52""4

polynomial synthesis from roots: poly([1,0.5]) = [1, -1.5, 0.5]
(1-—2"H1 =052 =1—-152""40.52"7

root a polynomial (factor polynomial): roots([1, -1.5, 0.5]) = [1, 0.5]
1—152"140522=(1—2""(1—-0.5z"")

partial fraction expansion:
r=[4,-3]; p=[1,05]; k=

H(2)
0=[1,1]; a=poly([1,0.5]); [r,p,k]=residuez(b,a);

5

H(z) = 1+ 271 _ 1+ 271
(1—2="1)(1-052z71) 1—1.52=1+0.5z72
4 23
1—(1)z"!  1-0.5z"1

hin] = 4(1)"u|n]

+ (—3)(0.5)"u[n]



Convergence and Regions of Convergence

Transfer function H(z) = B(z)/A(z) is represented in Matlab
by vectors b and a containing the coefficients of B(z) and
A(z), respectively.

make a pole-zero plot: zplane(b,a)
plot the frequency response: freqz(b,a)
filter a signal: y = filter(b,a,x)

compute the first 100 samples of the impulse response:
h = filter(b,a,[1,zeros(1,99)]);

compute analytical expression for the impulse response:
[r,p,k] = residuez(b,a);
Now write down h[n] from the residues, poles, and
direct terms.



Inverse Z-Transform Example

yn| =0.5yn —1]+zn] = y[n|—0.5yn—1] = xn
1
T 1-05z 1

™ 10(1—%2_1)
xnzlocos(—)un = X(z)= Szl > 1
n ) uln (2) = T e A

2| > 0.5 = hn]=(0.5)"uln]

yn| =zxn]xhin] = Y(z)=X(z)H(z)

1 -1
10 (1 757 )
(1 —0.5271)(1 —eim/4z=1)(1 — e—d7/4z—1)

Y(z) =

ROCy = ROCx NROCy = {2 : 2| > 1}

[r,p,k]=residuez(10*[1,-1/sqrt(2)],conv([1,-0.5],[1,-sqrt(2),1]));
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Inverse Z-Transform Example
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Inverse Z-Transform Example (continued)

>> [r,p,kl=residuez(10x[1,-1/sqrt(2)],conv([1,-0.5],[1,-sqrt(2),1]))

r =
5.9537 - 3.2562i >> [abs(r),angle(r)*180/pi]

5.9537 + 3.25621 ans =
-1.9074 + 0.00001 6.7/860 -28.67/51

6.7860 28.67/51
0.7071 + 0.70711 1.9074 180.0000

0.7071 - 0.7071i >> [abs(p),angle(p)*180/pil

0.5000 + 0.00001 ans =
1.0000 45.0000

1.0000 -45.0000
. 0.5000 0

yn| = —1.91(0.5)"un
+6.78¢ 28T I yn

Y O * T -
+ 6.78e7%% 7 e 1 y[n

_ (-1.91(0.5)” +13.56 cos (m W28‘7O>> uln]

4 180°



Inverse Z-Transform Examples

See more examples in the textbook Chapter 3.



System Algebra

Series and parallel cascade equivalences.

—» G2 —* HE@ — < — G@HEZ —

—  G(2)

—> < —» G@E@)+HEZ —

—»  H(2)

If G(z)H(z) = 1, and H(z) = B(z)/A(z), then G(z) = A(z)/B(z).

/

gln] * h[n] = 8[n] G(z) is the inverse system of H(z).

If H(z) is causal and stable, and G(z) is causal and stable,
then all poles and zeros of H(z) must be inside the unit circle.
This is called a minimum phase system.



System Algebra

24+0.8271 —2.92272
H(z) = =037 04
B —0.4z71 4 27
- 1405271 —0.2422
2—-18271+0.2277
- 1-0.82"14+0.1522

}JQ(Z)

ff(Z)iZiffl(Z) }fg(Z)

nl=[2, 0.8, -2.2]; di=[1, 0.3, -0.47];
n2=[0, -0.4, 1]; d2=[1, 0.5, -0.24];
n = conv(nl,d2) + conv(n2,dl);

d = conv(dl,d2); % common denominator
z = roots(n); % zeros = [ 0.7702, -0.8, -0.8, 0.1298]
p = roots(d); % poles = [-0.8 , -0.8, 0.5, 0.3 ]
n = poly(z([1,4]); % cancel zeros at -0.8

= 2*[1, -0.9, 0.1]
d = poly(p([3,4]); % cancel poles at -0.8

= [1, -0.8, 0.15]
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Next we will apply z-transform concepts to analyze systemes.



