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signal definition

Signal = Something that conveys information. Information conveyed in patterns of
variation.

Signal = Mathematical function with domain (independent variables) and range
(dependent variables).

f(t) monaural sound wave, radio signal[
fleft(t)
fright(t)

]
stereo sound wave

f(x, y) grayscale picture of a scene fred(x, y)
fgreen(x, y)
fblue(x, y)

 RGB color picture of a scene

f(x, y, t) silent film (grayscale)
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signal examples

hyperspectral image synthetic aperture
radar image MRI image

speech signal

electrocardiogram
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signal attributes

independent
variable(s)

(dimension)

f
(signal)

dependent
variable(s)

(channels/sensors)

Dimension = number of independent variables of a signal

Channels = number of dependent variables of a signal, number of sensors

f(t) → 1 dim. 1 chan.[
fleft(t)
fright(t)

]
→ 1 dim. 2 chan.

f(x, y) → 2 dim. 1 chan. fred(x, y)
fgreen(x, y)
fblue(x, y)

 → 2 dim. 3 chan.

f(x, y, t) → 3 dim. 1 chan.
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variables

Independent variable(s):

• Continuous, f(t), t ∈ R (real numbers, the physical world, time, space, etc.)

• Discrete, f [n], n ∈ Z (integers, discrete or sampled data, cyberspace)

Note: Sampling (A/D) and reconstruction (D/A) provides interface between
continuous and discrete realms

Dependent variable(s):

• Continuous (analog)

– physical world
– ex: voltage in a circuit

• Discrete (digital)

– physical world, ex: number of eggs laid by a chicken each day
– sampled data world, ex: 8-bit per pixel grayscale digital image
– ex: sampled audio signal with 8-bit quantization (256 levels)
– ex: sampled audio signal with 24-bit quantization (16 million levels)
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domain and range

domain:

• continuous-time, t ∈ R [seconds] (uncountable)

• continuous-space, x, y, z ∈ R [meters]

• continuous-wavelength, λ ∈ R [meters]

• discrete-time, n ∈ Z [unitless] (countable)

range:

• f(t) ∈ R, ex: voltage in a circuit, pressure in air

• f(t) ∈ C, ex: complex baseband radio signal

• f(t) ∈ A (finite alphabet), ex: symbols, words, etc.
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x[ 0] = 0.00000 x[25] = 0.00000
x[ 1] = 0.71312 x[26] = -0.71312
x[ 2] = 1.19975 x[27] = -1.19975
x[ 3] = 1.31918 x[28] = -1.31918
x[ 4] = 1.06954 x[29] = -1.06954
x[ 5] = 0.58779 x[30] = -0.58779
x[ 6] = 0.09676 x[31] = -0.09676
x[ 7] = -0.18054 x[32] = 0.18054
x[ 8] = -0.10673 x[33] = 0.10673
x[ 9] = 0.31704 x[34] = -0.31704
x[10] = 0.95106 x[35] = -0.95106
x[11] = 1.57007 x[36] = -1.57007
x[12] = 1.94908 x[37] = -1.94908
x[13] = 1.94908 x[38] = -1.94908
x[14] = 1.57007 x[39] = -1.57007
x[15] = 0.95106 x[40] = -0.95106
x[16] = 0.31704 x[41] = -0.31704
x[17] = -0.10673 x[42] = 0.10673
x[18] = -0.18054 x[43] = 0.18054
x[19] = 0.09676 x[44] = -0.09676
x[20] = 0.58779 x[45] = -0.58779
x[21] = 1.06954 x[46] = -1.06954
x[22] = 1.31918 x[47] = -1.31918
x[23] = 1.19975 x[48] = -1.19975
x[24] = 0.71312 x[49] = -0.71312

• CT signal is a waveform

• DT signal is a sequence of numbers (concept of time encoded in sample rate)

range of discrete-time signals
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• DT and digital signals: concept of time
is lost

• DT and digital signals are undefined
between samples (not zero)

• need sample rate to interpret DT and
digital signals

• DT signals have “amplitude”

• digitals signals are binary codes

xd[n] = b12
−1 + b22

−2 + · · ·+ bB2
−B,

x[n] ≈ R xd[n],

where R is a reference voltage

xd[ 0] = 0011001000 xd[25] = 0011001000
xd[ 1] = 0100001111 xd[26] = 0010000001
xd[ 2] = 0101000000 xd[27] = 0001010000
xd[ 3] = 0101001100 xd[28] = 0001000100
xd[ 4] = 0100110011 xd[29] = 0001011101
xd[ 5] = 0100000011 xd[30] = 0010001101
xd[ 6] = 0011010010 xd[31] = 0010111110
xd[ 7] = 0010110110 xd[32] = 0011011010
xd[ 8] = 0010111101 xd[33] = 0011010011
xd[ 9] = 0011101000 xd[34] = 0010101000
xd[10] = 0100100111 xd[35] = 0001101001
xd[11] = 0101100101 xd[36] = 0000101011
xd[12] = 0110001011 xd[37] = 0000000101
xd[13] = 0110001011 xd[38] = 0000000101
xd[14] = 0101100101 xd[39] = 0000101011
xd[15] = 0100100111 xd[40] = 0001101001
xd[16] = 0011101000 xd[41] = 0010101000
xd[17] = 0010111101 xd[42] = 0011010011
xd[18] = 0010110110 xd[43] = 0011011010
xd[19] = 0011010010 xd[44] = 0010111110
xd[20] = 0100000011 xd[45] = 0010001101
xd[21] = 0100110011 xd[46] = 0001011101
xd[22] = 0101001100 xd[47] = 0001000100
xd[23] = 0101000000 xd[48] = 0001010000
xd[24] = 0100001111 xd[49] = 0010000001

range of digital signals
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signal definition summary

term definition

signal something that conveys information in
patterns of variation

dimension number of independent variables
channels number of dependent variables
continuous “time” continuous independent variables
discrete “time” discrete independent variables
analog continuous dependent variables
digital discrete dependent variables
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signal examples
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signal examples

sound wave

sound wave
image/scene

radio wave
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• How do patterns convey information?

• What are the signal attributes?

signal example: sonar
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• How do patterns
convey information?

• What are the
signal attributes?

signal example: echolocation
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• How do patterns
convey information?

• What are the
signal attributes?

2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4
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0
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-0.4

-0.2

0
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0.4
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-0.4
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0

0.2

0.4

signal example: speech
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signal example: speech
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signal example: speech
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signal example: dolphin
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signal example: dolphin
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signal example: humpback whale & low-frequency sonar
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signal example: music (fireflies)
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• How do patterns convey information?

• What are the signal attributes?

signal example: bat
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signal example: radio waves
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• How do patterns
convey information?

• What are the
signal attributes?

signal example: radar
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signal example: radio signals
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• How do patterns
convey information?

• What are the
signal attributes?

signal example: ECG
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• How do patterns convey information?

• What are the signal attributes?

signal example: seismic exploration
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• How do patterns convey information?

• What are the signal attributes?

signal example: image
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• How do patterns convey information?

• What are the signal attributes?

signal example: image
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• How do patterns convey information?

• What are the signal attributes?

signal example: image
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signal example: hyperspectral image

What is the dimension and number of channels in a hyperspectral image?
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hyperspectral image

What is the dimension and number of channels in a hyperspectral image?
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hyperspectral image

What is the dimension and number of channels in a hyperspectral image?
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hyperspectral image

What are the attributes of a hyperspectral image? (dimension, channels, continuous
vs. discrete, analog vs. digital)
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daily closing stock price

What are the attributes of a stock price? (dimension, channels, continuous vs.
discrete, analog vs. digital)
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musical score

Is this a signal? If so, what are its attributes? (dimension, channels, continuous vs.
discrete, analog vs. digital)
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text

Is this a signal? If so, what are its attributes? (dimension, channels, continuous vs.
discrete, analog vs. digital)
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recorded music

Is this a signal? If so, what are its attributes? (dimension, channels, continuous vs.
discrete, analog vs. digital)
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operations on signals
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shifting and reversal

n
−10 −9 −8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10

x[n]

n
−10 −9 −8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10

x[n − 4]

n
−10 −9 −8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10

x[n + 4]

n
−10 −9 −8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10

x[−n]

n
−10 −9 −8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10

x[−n + 4]

n
−10 −9 −8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10

x[−n − 4]
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shifting and reversal

Shifting and reversal are used in convolution:

y[n] = x[n] ∗ h[n] =
∑
k

x[k]h[n− k]

Shifting and reversal are used to extract even and odd parts:

xeven[n] =
1

2
(x[n] + x[−n]) , xeven[−n] = xeven[n]

xodd[n] =
1

2
(x[n]− x[−n]) , xodd[−n] = −xodd[n]

x[n] = xeven[n] + xodd[n]
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common signals
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uses of impulse function

δ[n] =

{
1, n = 0

0, n ̸= 0

applications:

1. sifting or sampling: x[n] · δ[n− k] = x[k]δ[n− k] (multiplication)

2. delay/shift: x[n] ∗ δ[n− k] = x[n− k] (convolution)

3. representation: x[n] = x[n] ∗ δ[n] =
∑

k x[k]δ[n− k]

4. periodic construction: g[n] ∗
∑

k δ[n− kN ] =
∑

k g[n− kN ]
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impulse functions and properties

Dirac delta function

t

δ(t)

0

δ(t) =

{
∞, t = 0

0, t ̸= 0∫ ∞

−∞
δ(τ)dτ = 1∫ ∞

−∞
x(τ)δ(t− τ)dτ = x(t)

Kronecker delta function

n

δ[n]1

0−1−2 1 2

δ[n] =

{
1, n = 0

0, n ̸= 0

∞∑
k=−∞

δ[k] = 1

∞∑
k=−∞

x[k]δ[n− k] = x[n]
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sifting property of Kronecker delta

x[n]δ[n− k] = x[k]δ[n− k]

−10−8−6−4−2 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

x[n]

n

−10−8−6−4−2 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

δ[n− 20]

n

−10−8−6−4−2 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

x[n]δ[n− 20] = x[20]δ[n− 20]

n
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convolution property of Kronecker delta

x[n] ∗ δ[n− k] = x[n− k]

x[n] ∗ δ[n− k] =
∑
i

x[i]δ[(n− i)− k]

=
∑
i

x[i]δ[(n− k)− i]

=
∑
i

x[n− k]δ[(n− k)− i] (sift)

= x[n− k] ·
∑
i

δ[n− k − i]︸ ︷︷ ︸
=1

(factor out constant)

= x[n− k]
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convolution property of Kronecker delta

x[n] ∗ δ[n− k] = x[n− k]

−10−8−6−4−2 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

x[n]

n

−10−8−6−4−2 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

δ[n− 20]

n

−10−8−6−4−2 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

x[n] ∗ δ[n− 20] = x[n− 20]

n
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representation using Kronecker delta

Note that:

1 =
∑
k

δ[n− k]

Now multiply signal x[n] by 1 and then sift:

x[n] = x[n] · 1 = x[n]

(∑
k

δ[n− k]

)
︸ ︷︷ ︸

1

=
∑
k

x[n]δ[n− k] =
∑
k

x[k]δ[n− k]

We have:

x[n] =
∑
k

x[k]δ[n− k]
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representation using Kronecker delta

n
−10 −9 −8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10

x[n]δ[n + 2] = x[−2]δ[n + 2]

n
−10 −9 −8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10

x[n]δ[n + 1] = x[−1]δ[n + 1]

n
−10 −9 −8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10

x[n]δ[n] = x[0]δ[n]

n
−10 −9 −8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10

x[n]δ[n − 1] = x[1]δ[n − 1]

n
−10 −9 −8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10

x[n]δ[n − 2] = x[2]δ[n − 2]

...

...

n
−10 −9 −8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10

x[n]
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impulse train and pulse train construction

Periodic impulse train (period N):

p[n] =
∑
k

δ[n− kN ]

Periodic pulse train (period N):

x[n] = g[n] ∗ p[n] =
∑
k

g[n] ∗ δ[n− kN ] =
∑
k

g[n− kN ]
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impulse train and pulse train construction

n
−10 −9 −8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10

g[n]

(pulse)

n
−10 −9 −8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10

p[n], N = 5· · · · · ·
(impulse train)

n
−10 −9 −8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10

g[n + 10] g[n + 5] g[n] g[n − 1]

· · · · · ·

(pulse train)

50



Dirac and Kronecker delta

sifting property:

x(t)δ(t− τ) = x(τ)δ(t− τ)

x[n]δ[n− k] = x[k]δ[n− k]

convolution property:

x(t) ∗ δ(t− τ) = x(t− τ)

x[n] ∗ δ[n− k] = x[n− k]

periodic impulse trains:

p(t) =
∑
k

δ(t− kT ) (periodic with period T)

p[n] =
∑
k

δ[n− kN ] (periodic with period N)
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periodic pulse trains:

x(t) = g(t) ∗ p(t) =
∑
k

g(t− kT ) (periodic with period T)

x[n] = g[n] ∗ p[n] =
∑
k

g[n− kN ] (periodic with period N)
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step functions and properties

step function

t
0

1u(t)

u(t) =

{
0, t < 0

1, t ≥ 0

u(t) =

∫ t

−∞
δ(τ)dτ

δ(t) =
d

dt
u(t)

step function

n

u[n] · · ·

· · ·

1

0

1

1

1

2−1−2

u[n] =

{
0, n < 0

1, n ≥ 0

u[n] =

n∑
k=−∞

δ[k]

δ[k] = u[n]− u[n− 1]
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sinc

(aperiodic sinc)


sin(2Bπn)

πn
, n ̸= 0

2B, n = 0
B =

1

10

−30 −25 −20 −15 −10 −5 0 5 10 15 20 25 30

(zero crossings at multiples of 1/2B)

n

(periodic sinc)


sin(πfN)

sin(πf)
, f ̸= 0,±1,±2, · · ·

N, f = 0,±1,±2, · · ·
N = 9

0 1 2

(periodic with period = 1) (zero crossings at multiples of 1/N)

f
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causal exponential x[n] = anu[n]

real(z)

imag(z)

|a| < 1

|a| > 1|a| = 1

(three regions in the complex plane)
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envelope of exponential x[n] = anu[n]

0 2 4 6 8 10
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(blue = real(an), red = imag(an))

envelope (dashed gray lines) of an depends on radius |a|
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frequency of exponential x[n] = anu[n]
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frequency of exponential x[n] = anu[n]

real(z)

imag(z)

h
ig
h low

hi
gh

low

a = rej2πf = rejω

f = 0f = +1
2

f = −1
2

f > 0

f < 0
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polynomials and rational functions

polynomial: (order M , M + 1 coefficients)

H(z) =

M∑
n=0

hnz
−n = h0 + h1z

−1 + h2z
−2 + · · ·+ hMz−M = h0

M∏
k=1

(1− zkz
−1)

zk are the zeros of H(z)

rational function:

H(z) =

∑m
k=0 bkz

−k∑N
k=0 akz

−k
=

b0
a0

∏M
k=1(1− zkz

−1)∏N
k=1(1− pkz−1)

zk are the zeros of H(z)
pk are the poles of H(z)
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signal classification
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• deterministic signal = determined by mathematical formulas, tables, or other
rules acting on the independent variable(s)

• stochastic signal = governed random processes that are not completely
predictable
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deterministic vs. stochastic (random)
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(deterministic)

(stochastic)

deterministic vs. stochastic (random)
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deterministic vs. stochastic (random)

Can calculate by hand (transforms, convolution) with some deterministic signals.

Use computers to calculate with random signals.

We will do both hand calculations and algorithm implementation in software.
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• periodic: x(t+ kT ) = x(t) for all t ∈ R, k ∈ Z

• aperiodic: no repeating patterns

0 20 40 60 80 100
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periodic vs. aperiodic
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periodic vs. aperiodic

Periodic signals can be constructed from aperiodic signals

Suppose p(t) is aperiodic and
∫
p2(t)dt < ∞, then

x(t) =

∞∑
k=−∞

p(t− kT ),

is periodic with periodi T .

Suppose p[n] is aperiodic, then

x[n] = p[n mod N ]

is periodic with period N , where

n mod N = n−N⌊n/N⌋ = m, n = lN +m, m = 0, 1, 2, · · · , N − 1.
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finite vs. infinite

The “duration” or “width” of a signal is the size of the support set of the independent
variable(s).

doubly infinite signal f(t) for −∞ < t < ∞

semi-infinte (one-sided) signal f(t) for 0 ≤ t < ∞

semi-infinite (one-sided) signal f [n] for −∞ < n ≤ n0

finite signal f [m,n] for 0 ≤ m ≤ M − 1 and 0 ≤ n ≤ N − 1

finite 2D signal = an image

finite 1D signal = your favorite song

semi-infinite 1D signal = your favorite song stuck on repeat
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causal vs. non-causal

• Causality describes the support set of a signal.

• Causality usually describes signals where the independent variable is related to
time.

• Causal: f(t) = 0 for t < 0

• Anti-causal: f(t) = 0 for t > 0

0
t

(anti-causal)

0
t

(anti-causal)

0
t

(non-causal)

left-sidedright-sided

0
t

(causal)

0
t

(causal)

0
t

(non-causal)
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bounded vs. unbounded

If there exists M < ∞ such that |x(t)| ≤ M for all t, then x(t) is bounded.
Otherwise it is unbounded.

• bounded: x(t) = sin(2π440t), M = 1

• bounded: x(t) = e−tu(t), M = 1

• unbounded: x(t) = e−t (blows up as t → −∞)

• unbounded: x[n] = x[n − 1] + x[n − 2], n ≥ 0, x[0] = 1, x[1] = 1 (Fibonacci
sequence)
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unbounded exponential
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symmetry

symmetry name mathematical definition example

even x(−t) = x(t) sin(πBt)
πt

odd x(−t) = −x(t) sin(2πF0t)

real x∗(t) = x(t) u(t)

imaginary x∗(t) = −x(t) x(t) =
j

πt

Hermitian x∗(−t) = x(t) X(F ) =
ej2πFT − 1

j2πF

anti-Hermitian x∗(−t) = −x(t) X(F ) =


−1 + j, F > 0

0, F = 0,

+1 + j, F < 0
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summability

absolute sum of x[n] Ax =

∞∑
n=−∞

|x[n]| If Ax < ∞, then x[n]

is absolutely summable

energy of x[n] Ex =

∞∑
n=−∞

|x[n]|2 If Ex < ∞, then x[n]

is an energy signal

power of x[n] Px = lim
N→∞

∑N
n=−N |x[n]|2

2N + 1
If Px < ∞, then x[n]

is a power signal
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signal classification summary

attribute class

predictability deterministic, random
repeating structure periodic, aperiodic
support set finite, semi-infinite, infinite
amplitude limits bounded, unbounded
causality causal, anticausal, non-causal, left-sided, right-sided
symmetry even, odd, Hermitian, anti-Hermitian
summability absolutely summable, energy signal, power signal
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signal decompositions
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even & odd

x(t) = xe(t) + xo(t),
xe(t) =

1

2
[x(t) + x(−t)]

xo(t) =
1

2
[x(t)− x(−t)]

t

x(t)

t

x(−t)

t

xe(t)

t

xo(t)
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real & imaginary

x(t) = xr(t) + jxi(t),

xr(t) =
1

2
[x(t) + x∗(t)]

xi(t) =
1

2j
[x(t)− x∗(t)]
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Hermitian & anti-Hermitian

x(t) = xh(t) + jxa(t),

xh(t) =
1

2
[x(t) + x∗(−t)]

xa(t) =
1

2j
[x(t)− x∗(−t)]
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four-way decomposition

x(t) = xre(t) + xro(t) + jxie(t) + jxio(t)

xre(t) =
1

4
[x(t) + x(−t) + x∗(t) + x∗(−t)]

xro(t) =
1

4
[x(t)− x(−t) + x∗(t)− x∗(−t)]

xie(t) =
1

4j
[x(t) + x(−t)− x∗(t)− x∗(−t)]

xio(t) =
1

4j
[x(t)− x(−t)− x∗(t) + x∗(−t)]
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assignment
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1. What are the dimensions and number of channels of the following signals:

(a) Color video  vred(x, y, t)
vgreen(x, y, t)
vblue(x, y, t)


(b) ITU 5.1 surround sound 

xcenter(t)
xleft(t)
xright(t)

xleft surround(t)
xright surround(t)
xsubwoofer(t)
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2. The plot below shows the number of sunspots observed per year.

1800 1820 1840 1860 1880 1900 1920 1940 1960 1980 2000

year

0

50

100

150

200

250

300

350

400

S
un

sp
ot

 N
um

be
r

Describe the independent (domain) and dependent (range) variables of this signal
using the terms “continuous” and “discrete”.
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3. The plot below shows the total electron concentration in the Ionosphere at some
point in time.

Describe the independent (domain) and dependent (range) variables of this signal
using the terms “continuous” and “discrete”.
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4. Given x[n] = 0.9nu[n], sketch the following signals:

(a) x[n− 10]
(b) x[n+ 10]
(c) x[−n]
(d) x[−n+ 10]
(e) x[−n− 10]

5. Use the sifting property to simplify: cos(2π0.3n)δ[k + 20] =?

6. Use the sifting property to simplify the convolution sum: x[n] ∗ δ[n] =∑
k x[k]δ[n− k] =?

7. Use the sifting property to simplify the convolution sum: x[n] ∗ δ[n − m] =∑
k x[k]δ[n−m− k] =?

8. Let g[n] = (n+ 1) (u[n]− u[n− 4]) and

p[n] =

∞∑
k=−∞

δ[n− 6k]

Sketch a picture of g[n] ∗ p[n] for −20 ≤ n ≤ 20.
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9. Let a = 0.9ej2π0.1.

(a) Plot the point a on the complex plane. Include the unit circle.
(b) Sketch x[n] = anu[n] for −10 ≤ n ≤ 10.

10. Let a = 0.8899 + j0.6466.

(a) Plot the point a on the complex plane. Include the unit circle.
(b) Sketch x[n] = anu[n] for −10 ≤ n ≤ 10.

11. Prove that x[n] = anu[n] is absolutely summable when |a| < 1.

12. Let a = 0.9ej2π0.1. Compute the energy in x[n] = anu[n].

13. x[n] = sin(πfn)/(πn) is not absolutely summable. Prove that it is an energy
signal.

14. Compute the power in x[n] = cos(2π 7
20n).

15. Compute the energy and power of u[n].

16. Use Matlab’s roots function to calculate the zeros of the polynomial H(z) =
1− z−1 − z−2. (Hint: Enter help roots at the Matlab command prompt.)
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17. Let x[n] = ej2πfn. Use the definitions on the signal decomposition slides to
compute the following:

• xe[n] (even part)
• xo[n] (odd part)
• xr[n] (real part)
• xi[n] (imaginary part)
• xh[n] (Hermitian part)
• xa[n] (anti-Hermitian part)
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