ECE 3640 - Discrete-Time Signals and Systems
Sample Rate Conversion

Jake Gunther

Spring 2017
/AN
A

é.la' ,]:n.1

UtahStateUniversity

Department of Electrical & Computer Engineering

outline

mathematics of sample rate reduction
filtering to avoid aliasing

decimation - downsampling
downsampling convolution
mathematics of sample rate expansion
filtering to avoid imaging
interpolation - upsampling
upsampling convolution

sample rate conversion

multirate convolution

automatically designed filters

application: downsampling

e let y[n| be a D-fold down-sampled version of x|n|, then

Wi(f) —;J:ij (f—%)
Y<f>_;jzgx(f,ﬁ)

— replicate X(f) D times at k/D for k=0,1,--- ,D — 1
— scale the frequency axis by 1/D

— scale the amplitude by 1/D

e to avoid aliasing when downsampling, pre-filter with cutoff 1/(2D)

H(f)

w(n]

o

D

— y[n)]

downsampling spectra, pre-filtering: D = 3

e pre-filter transition band symmetric about 1/(2D) leads to aliasing at high frequencies

e aliasing avoided when stop band edge = 1/(2D)

downsampling spectra, downsampling: D = 3

e transition band symmetric about 1/(2D) leads to aliasing at high frequencies

e aliasing avoided when stop band edge = 1/(2D)

downsampling convolution

z[n] ~ H(f) - D > y[n]

y[n] Zh x[Dn — k

normal filtering 1 sample in 1 sample out
down sampling filtering D samples in 1 sample out

e computing all the outputs and then throwing away D — 1 out of D is inefficient

e compute only the needed samples (i.e. compute every Dth output)

down sampling
w(n] |
x|n ~ H(f) -4 D - yln
w[n] ’wo wy [w2 21’)3 w14 w15
D=3
y[n] ’—wYO w3 | w6 | W9 (W12|W15(W18 wys| .-

e computing values of w|n] that are not needed is inefficient

e only compute every Dth value of w[n| because y[n] = w|[Dn]

downsampling convolution using circular time-reversed
buffering

#define D 4
#define L 7

float h([L] = {0.08, 0.25, 0.64, 0.95, 0.95, 0.64, 0.25, 0.08};
float x([L] = {0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00};
float y;

int k, i=L-1, d=0;

FILE *xfx=fopen/(,) ;

FILE *xfy=fopen/(,) ;

fread (x+i,sizeof (float) ,1,fx); // read in first sample
while (!feof (fx)) {
if (d==0) {
for(y=0.0, k=0; k<L; k++) {
y += hlk]l*x[(k+i) % L]; // MAC with circular indexing
}
fwrite (&y,sizeof (float) ,1,fy); // save output
d=D-1;
} else {
d--;
+
i = (i+L-1) % L; // update circular index
fread (x+i,sizeof (float) ,1,fx); // read in next sample
+
fclose(fx);
fclose(fy);

application: up-sampling

e let y[n] be a U-fold up-sampled version of x|n], then

Y(f)=X(UJ)
— scale the frequency axis by D

e to remove images that appear when up-sampling, postfilter with cutoff 1/(2U)

SN e BN oy OGS

up-sampling spectra: U = 3

[N)
Wl
N~

® pass band should cover low pass replica; stop band should cut off other replicas

e pass and stop band edges symmetric about 1/(2U)

upsampling convolution

wln]

z|n] -t U ~ H(f) > y[n]
(2[n/U], if n/U = integer,
= — k|8[n — kU
wir) \O, otherwise kzz_:oow[loln |
(2[k], ifl=0,
kU + 1
wikt +1] = <\O, fl=1,---,U—1
:Zh
k
K—-1U-1 K-1
yliU + j] = > h[U +mlw[(i = DU + (j —m)] = Y h[IU + jlafi —]
[=0 m=0 [=0

e up sampling filtering achieved by inserting U — 1 zeros into the data buffer
between each input sample, or ...

e convolve with a subset of the filter coefficients A[IU + j], 7=0,1,---,U — 1

upsampling

8
=
A 4
%
-
=
=
=
E)

e it is wasteful to multiply by zero and to accumulate zero
e do only the multiplications necessary

e convolve with a subset of the filter coefficients h[IU + j], j=0,1,--- ,U —1

upsampling

w|n|
z[n] -t U | H(f) - y[n]

K, ifl=0, S .
wlkU +1] = i P 01 yliU + j] = hILU + jlx|i —]
’ I — Ly _ 1—0

h[n] ho | h1 | ho | hg | hg | h5 | hg | h7 | hg | hg |h10|h11|P12|P13]|P14

w[ls]==z[5] |5 0 | 0 |®4| 0 | 0 |=23| 0|0 |22| 0|0 |Z1]| 0] O

w[l6] =0 0O |%5(O 0O |%4| O 0 |*3] 0 0O |®2] 0 0O |®1] O

w[17]=0 | o |lo |25l 0| o |®a|l 0|0 |=3]0|0]|z2|0]| 0|21

e it is wasteful to multiply by zero and to accumulate zero
e do only necessary multiplications

e convolve with subsets of the filter coefficients,
h(3l + 1]| hq | hg | b7 [h10|P13 R[IU 4+ 4], =0,1,---,U —1

h[3l] ho | hg | hg | hg |h19

h[31 4 2]| hg | h5 | hg [h11|h14

x[5] TH | Tg | X3 [T2 | T]

up sampling convolution using circular time-reversed buffering

#define U 3 /* up sampling factor x*/
#define L 7 /* length of filter impulse response */
float hI[L] {0.08, 0.25, 0.64, 0.95, 0.95, 0.64, 0.25, 0.08%};
float x[L] {0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00};
float y; // accumulator
int k, i=L-1, u=0;
FILE xfx=fopen(,) ;
FILE *xfy=fopen/(,) ;
fread (x+i,sizeof (float) ,1,fx); // read in first sample
while (!feof (fx)) {
for(y=0.0, k=0; k<L; k++) {
y += hl[k]l*xx[(k+i) % L]; // MAC with circular indexing
+
fwrite (&y,sizeof (float) ,1,fy); // save output
i = (i+L-1) % L; // update circular index
if (u==0) {
fread (x+i,sizeof (float),1,fx); // read in next sample
u = 0U-1;
} else {
x[1] = 0.0; // set next sample to zero

u--;

+
fclose(fx);
fclose(fy);

up sampling convolution using circular time-reversed buffering

#define U 3 /* up sampling factor x*/
#define L 7 /* length of impulse response */
float filter_coefs[L] = {0.08, 0.25, 0.64, 0.95, 0.95, 0.64, 0.25, 0.08};
float y; // accmumulator
int i=L-1, j, k, m;
int M = L/U + ((L%U)>0); // same as M = ceil (L/U)
int N = M*U; // length of padded impulse response
float *x = (float*)calloc(sizeof (float),M); // circular data buffer
float *h = (float*)calloc(sizeof(float),N); // zero-padded filter coefs
memcpy (h,filter_coefs,sizeof (float)*L); // filt coefs => zero-padded buffer
FILE xfx=fopen (,) ;
FILE *fy=fopen/(,) ;
fread (x+i,sizeof (float) ,1,fx); // read first sample into circ data buffer
while (!feof (fx)) {
for(j=0; j<U; j++) { // loop over subsets of filter coefficients
for(y=0.0, k=0, m=0; k<M; k++, m+=U) {
y += hlm+jl*x[(k+i) % M]; // MAC with circular indexing
+
fwrite(&y,sizeof (float) ,1,fy); // write U outputs for ever 1 input
+
i = (i+L-1) % L; // update circular index
fread (x+i,sizeof (float) ,1,fx); // read in next sample
+
fclose(fx);
fclose(fy);

sample rate conversion by rational factor U/ D

xn] —{1U

[
>

H(f)

v|n)

[
>

LD

— y[n]

o if U > D then the output sample rate is higher than the input sample rate

o if U < D then the output sample rate is lower than the input sample rate

e cut off frequency for H(f) is min{1/(2D),1/(2U)} = 1/(2max{D,U})

multirate convolution using circular time-reversed buffering

integrate up and down sampling codes

example: U =3 and D =2

_1 1 _ 1 i 1
2 3 6 3 2
V(f) ;
-0 T - T
1 _1 _1 0 1 1 1
2 3 6 6 3 2
Y(f
-r 1 T (I) T - > f
_1 1 1 0 1 1 1
2 3 6 6 3 2

e input fiax = 1/2, output frax = (D/U) frax = 1/3

example: U =2and D =3

oI
Wl -
N|—

H(f) design for sample rate conversion

given: U and D and L (filter half length)
let: N = max{U, D}
let: frass = 0.9/(2N),

compute: f1 = (fs+ f,)/2,

let: h[n] _ isin(Zﬂ'fln) sin(27 fon) for n —

fstop = 1.1/(2N)

N 27wfin

27 fon

example: L =100, N =9

-10+

magnitude [dB]

10

O_

0

05

frequency [cycles]

—L,—L+1,---,L—

magnitude

f2 — (fs — fp)/2

1, L

—_

o
®

o
o

©
'S

o
(M)

bo
o

frequency [cycles]

0.5

assignment

write a C program to perform rational sample rate conversion

the program should accept command line arguments for U, D the file to be
converted, and a filter impulse response file

design the filters in Matlab

use the file galwayll_mono_45sec.wav to perform the following processing
steps

up sample by U = 2, use fpss = 0.9/(2U) and feop = 1.1/(2U)

— what are the input and output sample rates?

down sample by D =5, use fpass = 0.9/(2D) and foop, = 1.1/(2D)

— what are the input and output sample rates?

perform a U/D = 2/5 sample rate conversion

— what are the input and output sample rates?

— what fpass and feop did you use?

in each of these cases, choose a sufficiently long filter so that the stop band
attenuation is greater than 40 dB

— how long was the filter in each case
— plot the magnitude response (both linear and dB scales)

in each of these cases, plot spectrograms of the signal before and after conversion

— comment on what you see in the output spectrogram and how it can be
explained based on the sample rate conversion operation

— compare the input and output spectrograms

— make sure to use the correct sample rates for the spectrograms

down sample the signal by D = 5 without any anti-aliasing filtering

— listen to the input and output and compare to the case in which anti-aliasing
filtering is used

— comment on what you hear (what does aliasing sound like?)

— compare spectrograms of the downsampled signal with and without anti-aliasing
filtering

— comment on what you see

