
ECE 3640 - Discrete-Time Signals and Systems
Sample Rate Conversion

Jake Gunther

Spring 2017

Department of Electrical & Computer Engineering

outline

• mathematics of sample rate reduction

• filtering to avoid aliasing

• decimation - downsampling

• downsampling convolution

• mathematics of sample rate expansion

• filtering to avoid imaging

• interpolation - upsampling

• upsampling convolution

• sample rate conversion

• multirate convolution

• automatically designed filters

1

application: downsampling

• let y[n] be a D-fold down-sampled version of x[n], then

W (f) =
1

D

D−1∑
k=0

X

(
f − k

D

)

Y (f) =
1

D

D−1∑
k=0

X

(
f − k
D

)

– replicate X(f) D times at k/D for k = 0, 1, · · · , D − 1
– scale the frequency axis by 1/D
– scale the amplitude by 1/D

• to avoid aliasing when downsampling, pre-filter with cutoff 1/(2D)

x[n] H(f) ↓ D y[n]
w[n]

2

downsampling spectra, pre-filtering: D = 3

f

−1
2

1
2

0

X(f)

−1
6

1
6

f

−1
2

1
2

0

H(f)

−1
6

1
6

f

−1
2

1
2

0−1
6

1
6

W (f) = H(f)X(f)

• pre-filter transition band symmetric about 1/(2D) leads to aliasing at high frequencies

• aliasing avoided when stop band edge = 1/(2D)

3

downsampling spectra, downsampling: D = 3

f

−1
2

1
2

0−1
6

1
6

W (f)

f

−1
2

1
2

0−1
6

1
6

W (f)W (f + 1/3) W (f − 1/3)

f

−1
2

1
2

0

Y (f)

str
etch stretch

• transition band symmetric about 1/(2D) leads to aliasing at high frequencies

• aliasing avoided when stop band edge = 1/(2D)

4

downsampling convolution

x[n] H(f) ↓ D y[n]
w[n]

w[n] =
∑
k

h[k]x[n− k]

y[n] = w[Dn] =
∑
k

h[k]x[Dn− k]

normal filtering 1 sample in 1 sample out
down sampling filtering D samples in 1 sample out

• computing all the outputs and then throwing away D − 1 out of D is inefficient

• compute only the needed samples (i.e. compute every Dth output)

5

down sampling

x[n] H(f) ↓ D y[n]
w[n]

w[n]

y[n]

D = 3

w0 w1 w2 w3 w4 w5 w6 w7 w8 w9 w10 w11 w12 w13 w14 w15 · · ·

w0 w3 w6 w9 w12 w15 w18 w21 w24 w27 w30 w33 w36 w39 w42 w45 · · ·

• computing values of w[n] that are not needed is inefficient

• only compute every Dth value of w[n] because y[n] = w[Dn]

6

downsampling convolution using circular time-reversed
buffering

#define D 4

#define L 7

float h[L] = {0.08 , 0.25, 0.64, 0.95, 0.95, 0.64, 0.25, 0.08};

float x[L] = {0.00 , 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00};

float y;

int k, i=L-1, d=0;

FILE *fx=fopen("inputfile","rb");

FILE *fy=fopen("outputfile","wb");

fread(x+i,sizeof(float) ,1,fx); // read in first sample

while (!feof(fx)) {

if(d==0) {

for(y=0.0, k=0; k<L; k++) {

y += h[k]*x[(k+i) % L]; // MAC with circular indexing

}

fwrite (&y,sizeof(float),1,fy); // save output

d=D-1;

} else {

d--;

}

i = (i+L-1) % L; // update circular index

fread(x+i,sizeof(float) ,1,fx); // read in next sample

}

fclose(fx);

fclose(fy);

7

application: up-sampling

• let y[n] be a U -fold up-sampled version of x[n], then

Y (f) = X(Uf)

– scale the frequency axis by D

• to remove images that appear when up-sampling, postfilter with cutoff 1/(2U)

x[n] ↑ U H(f) y[n]
w[n]

8

up-sampling spectra: U = 3

f

−1
2

1
2

0

X(f)

f

−1
2

1
2

0

X(3f)

−1
6

1
6−1

3
1
3

squeeze sq
uee

ze

f

−1
2

1
2

0−1
6

1
6

H(f)X(f)

f

−1
2

1
2

0

Y (f)

−1
6

1
6−1

3
1
3

• pass band should cover low pass replica; stop band should cut off other replicas

• pass and stop band edges symmetric about 1/(2U)

9

upsampling convolution

x[n] ↑ U H(f) y[n]
w[n]

w[n] =

{
x[n/U], if n/U = integer,

0, otherwise
=

∞∑
k=−∞

x[k]δ[n− kU]

w[kU + l] =

{
x[k], if l = 0,

0, if l = 1, · · · , U − 1

y[n] =
∑
k

h[k]w[n− k]

y[iU + j] =

K−1∑
l=0

U−1∑
m=0

h[lU +m]w[(i− l)U + (j −m)] =

K−1∑
l=0

h[lU + j]x[i− l]

• up sampling filtering achieved by inserting U − 1 zeros into the data buffer
between each input sample, or ...

• convolve with a subset of the filter coefficients h[lU + j], j = 0, 1, · · · , U − 1

10

upsampling

x[n] ↑ U H(f) y[n]
w[n]

w[kU + l] =

{
x[k], if l = 0,

0, if l = 1, · · · , U − 1
, y[iU + j] =

K−1∑
l=0

h[lU + j]x[i− l]

x[n]

w[n]

U = 3

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 · · ·

x0 0 0 x1 0 0 x2 0 0 x3 0 0 x4 0 0 x5 · · ·

• it is wasteful to multiply by zero and to accumulate zero

• do only the multiplications necessary

• convolve with a subset of the filter coefficients h[lU + j], j = 0, 1, · · · , U − 1

11

upsampling

x[n] ↑ U H(f) y[n]
w[n]

w[kU + l] =

{
x[k], if l = 0,

0, if l = 1, · · · , U − 1
, y[iU + j] =

K−1∑
l=0

h[lU + j]x[i− l]

h[n] h0 h1 h2 h3 h4 h5 h6 h7 h8 h9 h10 h11 h12 h13 h14

w[15] = x[5] x5 0 0 x4 0 0 x3 0 0 x2 0 0 x1 0 0

w[16] = 0 0 x5 0 0 x4 0 0 x3 0 0 x2 0 0 x1 0

w[17] = 0 0 0 x5 0 0 x4 0 0 x3 0 0 x2 0 0 x1

h[3l] h0 h3 h6 h9 h12

h[3l + 1] h1 h4 h7 h10 h13

h[3l + 2] h2 h5 h8 h11 h14

x[5] x5 x4 x3 x2 x1

• it is wasteful to multiply by zero and to accumulate zero
• do only necessary multiplications
• convolve with subsets of the filter coefficients,

h[lU + j], j = 0, 1, · · · , U − 1

12

up sampling convolution using circular time-reversed buffering

#define U 3 /* up sampling factor */

#define L 7 /* length of filter impulse response */

float h[L] = {0.08 , 0.25, 0.64, 0.95, 0.95, 0.64, 0.25, 0.08};

float x[L] = {0.00 , 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00};

float y; // accumulator

int k, i=L-1, u=0;

FILE *fx=fopen("inputfile","rb");

FILE *fy=fopen("outputfile","wb");

fread(x+i,sizeof(float) ,1,fx); // read in first sample

while (!feof(fx)) {

for(y=0.0, k=0; k<L; k++) {

y += h[k]*x[(k+i) % L]; // MAC with circular indexing

}

fwrite (&y,sizeof(float),1,fy); // save output

i = (i+L-1) % L; // update circular index

if(u==0) {

fread(x+i,sizeof(float) ,1,fx); // read in next sample

u = U-1;

} else {

x[i] = 0.0; // set next sample to zero

u--;

}

}

fclose(fx);

fclose(fy);

13

up sampling convolution using circular time-reversed buffering

#define U 3 /* up sampling factor */

#define L 7 /* length of impulse response */

float filter_coefs[L] = {0.08 , 0.25, 0.64, 0.95, 0.95, 0.64, 0.25, 0.08};

float y; // accmumulator

int i=L-1, j, k, m;

int M = L/U + ((L%U) >0); // same as M = ceil(L/U)

int N = M*U; // length of padded impulse response

float *x = (float *) calloc(sizeof(float),M); // circular data buffer

float *h = (float *) calloc(sizeof(float),N); // zero -padded filter coefs

memcpy(h,filter_coefs ,sizeof(float)*L); // filt coefs => zero -padded buffer

FILE *fx=fopen("inputfile","rb");

FILE *fy=fopen("outputfile","wb");

fread(x+i,sizeof(float) ,1,fx); // read first sample into circ data buffer

while (!feof(fx)) {

for(j=0; j<U; j++) { // loop over subsets of filter coefficients

for(y=0.0, k=0, m=0; k<M; k++, m+=U) {

y += h[m+j]*x[(k+i) % M]; // MAC with circular indexing

}

fwrite (&y,sizeof(float),1,fy); // write U outputs for ever 1 input

}

i = (i+L-1) % L; // update circular index

fread(x+i,sizeof(float) ,1,fx); // read in next sample

}

fclose(fx);

fclose(fy);

14

sample rate conversion by rational factor U/D

x[n] ↑ U H(f) ↓ D y[n]
w[n] v[n]

• if U > D then the output sample rate is higher than the input sample rate

• if U < D then the output sample rate is lower than the input sample rate

• cut off frequency for H(f) is min{1/(2D), 1/(2U)} = 1/(2max{D,U})

15

multirate convolution using circular time-reversed buffering

integrate up and down sampling codes

16

example: U = 3 and D = 2

f

−1
2

1
2

0

X(f)

f

−1
2

1
2

0

W (f)

−1
6

1
6−1

3
1
3

squeeze squeeze

f

−1
2

1
2

0

V (f)

−1
6

1
6−1

3
1
3

f

−1
2

1
2

0

Y (f)

−1
6

1
6−1

3
1
3

• input fmax = 1/2, output fmax = (D/U)fmax = 1/3

17

example: U = 2 and D = 3

f

−1
2

1
2

0

X(f)

f

−1
2

1
2

0

W (f)

−1
6

1
6−1

3
1
3

squeeze sq
uee

ze

f

−1
2

1
2

0

V (f)

−1
6

1
6−1

3
1
3

f

−1
2

1
2

0

Y (f)

−1
6

1
6−1

3
1
3

18

H(f) design for sample rate conversion

• given: U and D and L (filter half length)

• let: N = max{U,D}

• let: fpass = 0.9/(2N), fstop = 1.1/(2N)

• compute: f1 = (fs + fp)/2, f2 = (fs − fp)/2

• let: h[n] = 1
N

sin(2πf1n)
2πf1n

sin(2πf2n)
2πf2n

for n = −L,−L+ 1, · · · , L− 1, L

• example: L = 100, N = 9

19

assignment

• write a C program to perform rational sample rate conversion

• the program should accept command line arguments for U , D the file to be
converted, and a filter impulse response file

• design the filters in Matlab

• use the file galway11_mono_45sec.wav to perform the following processing
steps

• up sample by U = 2, use fpass = 0.9/(2U) and fstop = 1.1/(2U)

– what are the input and output sample rates?

• down sample by D = 5, use fpass = 0.9/(2D) and fstop = 1.1/(2D)

– what are the input and output sample rates?

• perform a U/D = 2/5 sample rate conversion

– what are the input and output sample rates?

20

– what fpass and fstop did you use?

• in each of these cases, choose a sufficiently long filter so that the stop band
attenuation is greater than 40 dB

– how long was the filter in each case
– plot the magnitude response (both linear and dB scales)

• in each of these cases, plot spectrograms of the signal before and after conversion

– comment on what you see in the output spectrogram and how it can be
explained based on the sample rate conversion operation

– compare the input and output spectrograms
– make sure to use the correct sample rates for the spectrograms

• down sample the signal by D = 5 without any anti-aliasing filtering

– listen to the input and output and compare to the case in which anti-aliasing
filtering is used

– comment on what you hear (what does aliasing sound like?)
– compare spectrograms of the downsampled signal with and without anti-aliasing

filtering
– comment on what you see

21

