ECE 3640 - Discrete-Time Signals and Systems The Discrete-Time Fourier Transform

Jake Gunther

Spring 2014

Department of Electrical & Computer Engineering

 $x(t) = \exp(j2\pi F_0 t)$

- periodic for all frequencies $-\infty < F_0 < \infty$
- period $T_0 = 1/F_0$

$$x(t+T_0) = \exp(j2\pi F_0(t+T_0))$$

=
$$\exp(j2\pi F_0 t) \underbrace{\exp(j2\pi F_0 T_0)}_1$$

=
$$\exp(j2\pi F_0 t)$$

=
$$x(t)$$

- two complex expoentials with different frequencies are different
- let $F_1 \neq F_2$, then

$$x_1(t) = \exp(j2\pi F_1 t) \neq \exp(j2\pi F_2 t) = x_2(t)$$
 for all t

• they may be equal at some times, but are not equal everywhere

 $x(t) = \exp(j2\pi F_0 t)$

• the rate of oscillation increases indefinitely as $F_0 \to \infty$ or as $T_0 \to 0$

• a time shift is equivalent to a phase shift

$$x(t-\tau) = \exp(j2\pi F_0(t-\tau)) = \exp(j[2\pi F_0 t - \varphi]), \quad \varphi = 2\pi F_0 \tau$$

- for every phase shift φ there exists a time shift τ

- infinite number of harmonically related and orthogonal complex exponentials
- let $s_k(t) = \exp(j2\pi kF_0t), \ k = \cdots, -2, -1, 0, 1, 2, \cdots$

$$\begin{split} \int_{-T_0/2}^{T_0/2} s_k(t) s_m^*(t) dt &= \int_{-T_0/2}^{T_0/2} \exp(j2\pi F_0[k-m]t) dt \\ &= \frac{\exp(j2\pi F_0[k-m]t])}{j2\pi F_0[k-m]} \Big|_{-T_0/2}^{T_0/2} \\ &= \frac{1}{F_0} \frac{\exp(j\pi[k-m]) - \exp(-j\pi[k-m])}{2j\pi[k-m]} \\ &= T_0 \frac{\sin(\pi[k-m])}{\pi[k-m]} \\ &= T_0 \delta[k-m] = \begin{cases} T_0, & k=m, \\ 0, & \text{otherwise} \end{cases} \end{split}$$

• complex exponentials are eigenfunctions of CT-LTI systems

$$x(t) = \exp(j2\pi F_0 t) \longrightarrow h(t) \longrightarrow y(t) = H(F_0)\exp(j2\pi F_0 t) = H(F_0)x(t)$$

$$\begin{aligned} x(t) &= \exp(j2\pi F_0 t) \\ y(t) &= h(t) * x(t) = \int h(\tau) \exp(j2\pi F_0[t-\tau]) d\tau \\ &= \underbrace{\int h(\tau) \exp(-j2\pi F_0 \tau) d\tau}_{H(F_0)} \cdot \underbrace{\exp(j2\pi F_0 t)}_{x(t)} = H(F_0) x(t) \end{aligned}$$

- output has same frequency as the input
- only amplitude and phase have changed: $H(F_0) = |H(F_0)| \exp(j \angle H(F_0))$

DT complex exponentials

- can be obtained by periodically sampling CT complex exponentials
- let $F_s = \frac{1}{T_s}$ be the sample rate/sample frequency
- sample times $t = nT_s$

$$\begin{split} x[n] &= x(t)|_{t=nT_s} = \exp(j2\pi F_0 T_s n) = \exp(j2\pi f_0 n) \\ f_0 &= F_0 T_s = \frac{F_0}{F_s} \qquad \text{normalized (cyclic) frequency [cycles/sample]} \\ \omega_0 &= 2\pi f_0 = 2\pi \frac{\Omega_0}{F_s} = 2\pi \Omega_0 T_s \qquad \text{normalized frequency [rads/sample]} \end{split}$$

CT versus **DT** complex exponentials

- CT complex exponential: $x(t) = \exp(j2\pi F_0 t)$
 - continuous frequency variable
 - continuous time variable
- DT complex exponential: $x[n] = \exp(j2\pi f_0 n)$
 - continuous frequency variable
 - discrete time variable
- the behavior is quite different due to discreteness of time

 $x[n] = \exp(j2\pi f_0 n)$

• periodic only for rational frequencies $f_0 = \frac{k}{N}$

 $\bullet \ {\rm period} \ N$

$$x[n+N] = \exp(j2\pi f_0(n+N))$$

= $\exp(j2\pi f_0 n) \exp(j2\pi f_0 N) = x[n] \exp(j2\pi f_0 N)$

• for x[n] to be periodic with period N, we must have

 $\exp(j2\pi f_0 N) = 1 \quad \Rightarrow \quad f_0 N = k \quad \text{(integer)}$

• f = k/N where k and N are relatively prime, i.e. gcd(k, N) = 1

$$f_0 = \frac{F_0}{F_s} = \frac{T_s}{T_0} = \frac{k}{N}$$

 $kT_0 = NT_s$ (CT-CE complets k periods in N samples)

 $kF_s = NF_0$ (Nth harmonic of CT-CE is a multiple of the sample rate) $k/T_s = N/T_0$ (num. samples/period multiple of num. samples/sec.)

- non-uniqueness of DT-CE
- DT-CE are periodic in the frequency variable

$$\exp(j2\pi[f_0 + k]n) = \exp(j2\pi f_0 n) \underbrace{\exp(j2\pi kn)}_{1} = \exp(j2\pi f_0 n)$$

- f_0 and $f_0 + k$ are the same frequency (for any integer k)
- ω_0 and $\omega_0 + 2\pi k$ are the same frequency
- $\exp(j2\pi f_0 n)$ is periodic in f_0 with period 1
- $\exp(j\omega_0 n)$ is periodic in ω_0 with period 2π
- let $x_1[n] = \exp(j2\pi f_1 n)$ and $x_2[n] = \exp(j2\pi f_2 n)$, if $f_2 = f_1 + k$ then

$$x_1[n] = x_2[n]$$
 for all n

• distinct frequencies lie in a fundamental interval (fundamental range)

$$\begin{array}{rcccccccc} f & \in & [0,1) & \text{ or } & [-\frac{1}{2},\frac{1}{2}) \\ \omega & \in & [0,2\pi) & \text{ or } & [-\pi,\pi) \end{array}$$

 $x[n] = \exp(j2\pi f_0 n)$

- the rate of oscillation does not increase indefinitely
- assuming fundamental range [0,1), rate of oscillation increases from 0 to $\frac{1}{2}$, and then it decreases from $\frac{1}{2}$ to 1
- "low" frequencies near 0 and ± 1 and ± 2 and ± 3 and \ldots
- "high" frequencies near ±¹/₂ and ±³/₂ and ±⁵/₂ and ...
 (half way in between the low frequencies)

• a time shift is equivalent to a phase shift

$$x[n-n_0] = \exp(j2\pi f_0[n-n_0]) = \exp(j[2\pi f_0 n - \varphi]), \quad \varphi = 2\pi f_0 n_0$$

• not all phase shifts correspond to integer sample shifts

- finite number of harmonically related and orthogonal complex exponentials
- let $s_k[n] = \exp(j2\pi(k/N)n)$ be a periodic DT-CE
- (k/N) and (k/N) + 1 = (k+N)/N give the same sequence
- there are only N harmonically related DT-CE sequences, $s_k[n], k = 0, 1, \cdots, N-1$
- they are orthogonal

$$\sum_{n=0}^{N-1} s_k[n] s_m^*[n] = \sum_{n=0}^{N-1} \exp\left(\frac{j2\pi[k-m]n}{N}\right) = \frac{1 - \exp(j2\pi[k-m])}{1 - \exp\left(\frac{j2\pi[k-m]}{N}\right)}$$
$$= \frac{\exp(j\pi[k-m]) - \exp(-j\pi[k-m])}{\exp\left(\frac{j\pi[k-m]}{N}\right) - \exp\left(\frac{-j\pi[k-m]}{N}\right)} \exp\left(\frac{-j\pi[k-m][N-1]}{N}\right)$$
$$= \frac{\sin(\pi[k-m])}{\sin(\pi[k-m]/N)} \exp\left(\frac{-j\pi[k-m][N-1]}{N}\right) = N\delta[m-k]$$

• here is a useful identity that is easily verified by multiplication

$$\exp(jA) - \exp(jB) = \left[\exp\left(j\frac{A+B}{2}\right) - \exp\left(-j\frac{A+B}{2}\right)\right] \exp\left(j\frac{A-B}{2}\right)$$
$$= 2j\sin\left(\frac{A+B}{2}\right) \exp\left(j\frac{A-B}{2}\right)$$

• complex exponentials are eigenfunctions of DT-LTI systems

$$x[n] = \exp(j2\pi f_0 n) \longrightarrow h[n] \longrightarrow y[n] = H(f_0)\exp(j2\pi f_0 n) = H(f_0)x[n]$$

$$x[n] = \exp(j2\pi f_0 n)$$

$$y[n] = h[n] * x[n] = \sum h[k] \exp(j2\pi f_0[n-k])$$

$$= \underbrace{\sum h[k] \exp(-j2\pi f_0 k)}_{H(f_0)} \cdot \underbrace{\exp(j2\pi f_0 n)}_{x[n]} = H(f_0)x[n]$$

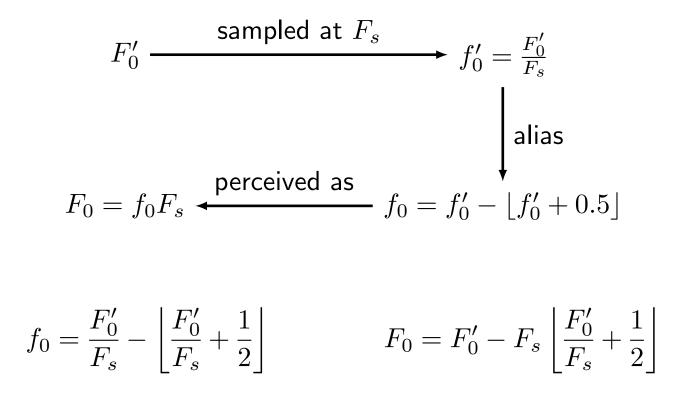
- output has same frequency as the input
- only amplitude and phase have changed: $H(f_0) = |H(f_0)| \exp(j \angle H(f_0))$

frequency aliases of f'_0

- fundamental range: [0,1)
 - take the fractional part: $f_0 = f'_0 \lfloor f'_0 \rfloor$
 - ex: $f'_0 = 36.1$ aliases to $f_0 = 0.1$ which is a low frequency
 - ex: $f'_0 = 36.9$ aliases to $f_0 = 0.9$ which is a low frequency
- fundamental range: [-0.5, 0.5)
 - take the fractional part: $f_0 = f'_0 \lfloor f'_0 + \frac{1}{2} \rfloor$
 - ex: $f'_0 = 36.1$ aliases to $f_0 = 0.1$ which is a low frequency
 - ex: $f'_0 = 36.9$ aliases to $f_0 = -0.1$ which is a low frequency
- the basic idea is to keep subtracting 1 from f_0' until the answer falls into the fundamental range

frequency aliases when sampling

• Q: a sinusoid with frequency F'_0 is sampled at a rate F_s , what is the perceived frequency?



- small changes in frequency can lead to large changes in the period
- ex: $\cos(2\pi(12/36)n) = \cos(2\pi n/3)$ has frequency 12/36 = 1/3 and fundamental period N=3
- ex: $\cos(2\pi(13/36)n)$ has frequency 13/36 and fundamental period N = 36
- Q: what is going on here?
- A1: the "envelope" (CT-sinusoid) of the signal changes only slightly in these examples
- A2: whether the sampled signal repeats (periodic) or not depends on the relation between the sample rate and the frequency

continuous-time Fourier series

• for periodic signals x(t)

$$x(t) = \sum_{k=-\infty}^{\infty} X_k e^{j2\pi kt/T} \qquad X_k = \frac{1}{T} \int_{t_0}^{t_0+T} x(t) e^{-j2\pi kt/T} dt$$

• consider the special case when the period is T = 1

$$x(t) = \sum_{k=-\infty}^{\infty} X_k e^{j2\pi kt} \qquad X_k = \int_{-\frac{1}{2}}^{\frac{1}{2}} x(t) e^{-j2\pi kt} dt$$

Dirichlet (sufficient) conditions

- 1. $\int_T |x(t)| dt < \infty \implies |X_k| < \infty$
- 2. x(t) has a finite number of maxima and minima in any period
- 3. x(t) has a finite number of discontinuities in any period
- if these conditions are satisfied, then Fourier sum converges to x(t) at all points where x(t) is continuous and converges to the average value of the right-hand and left-hand limits at points where x(t) is discontinuous
- necessary conditions are not known
- every physically real periodic signal satisfies 1, 2, 3
- every physically real periodic signal has CTFS
- sometimes CTFS can be calculated by hand
- most of the time CTFS is evaluated numerically

continuous-time Fourier transform

• for aperiodic signals x(t)

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\Omega) e^{j\Omega t} d\Omega$$
$$x(t) = \int_{-\infty}^{\infty} X(F) e^{j2\pi F t} dF$$

$$X(\Omega) = \int_{-\infty}^{\infty} x(t)e^{-j\Omega t}dt$$
$$X(F) = \int_{-\infty}^{\infty} x(t)e^{-j2\pi Ft}dt$$

Dirichlet (sufficient) conditions

- 1. $\int |x(t)| dt < \infty \implies |X(F)| < \infty$
- 2. x(t) has a finite number of maxima and minima
- 3. x(t) has a finite number of discontinuities
- if these conditions are satisfied, then Fourier integral converges to x(t) at all points where x(t) is continuous and converges to the average value of the right-hand and left-hand limits at points where x(t) is discontinuous
- necessary conditions are not known
- every physically real signal satisfies 1, 2, 3
- every physically real signal has CTFT
- sometimes CTFT can be calculated by hand
- most of the time CTFT is evaluated numerically

CTFT pairs

x(t)	$X(\Omega)$	X(F)
$\delta(t)$	1	???
1	$2\pi\delta(\Omega)$	
$\delta(t-t_0)$	$e^{-j\Omega t_0}$	
$e^{j\Omega_0 t}$	$2\pi\delta(\Omega-\Omega_0)$	
$\cos(\Omega_0 t)$	$\pi[\delta(\Omega - \Omega_0) + \delta(\Omega + \Omega_0)]$	
$\sin(\Omega_0 t)$	$j\pi[-\delta(\Omega - \Omega_0) + \delta(\Omega + \Omega_0)]$	
u(t)	$\pi\delta(\Omega) + rac{1}{i\Omega}$	
$\delta(t) - \frac{1}{it}$	$2\pi u(\Omega)$	
$\operatorname{sgn}(t)$	$rac{2}{j\Omega}$	
$\begin{cases} 1, & t \le t_0 \\ 0, & t > t_0 \end{cases}$	$\frac{2\sin(\Omega t_0)}{2}$	
$\left \begin{array}{c} 0, t > t_0 \end{array}\right $	Ω	
$\frac{\sin(\Omega_0 t)}{2}$	$\begin{cases} 1, & \Omega \le \Omega_0 \\ 0, & \Omega > \Omega_0 \end{cases}$	
πt	$0, \Omega > \Omega_0$	
$\sum_{n=-\infty}^{\infty} \delta(t-nT)$	$\frac{2\pi}{T}\sum_{k=-\infty}^{\infty}\delta\left(\Omega-\frac{2\pi}{T}k\right)$	
$e^{-rac{t^2}{2\sigma^2}}$	$\sqrt{2\pi\sigma^2}e^{-\frac{\sigma^2\omega^2}{2}}$	

CTFT of periodic signals

- let x(t) have finite energy and be aperiodic
- $y(t) = \sum_{n} x(t nT_0)$ is periodic with period T_0
- write it as a convolution:

$$y(t) = x(t) * \sum_{n} \delta(t - nT_0)$$
(1)

- note that the CTFT of $\sum_{n} \delta(t nT_0)$ is $F_0 \sum_{k} \delta(F kF_0)$, $F_0 = 1/T_0$
- take CTFT of both sides of (1)

$$Y(F) = X(F) \cdot F_0 \sum_k \delta(F - kF_0) = F_0 \sum_k X(kF_0)\delta(F - kF_0)$$

- periodic in time-domain leads to weighted impulse train in the frequency-domain (and vice versa)
- periodic replication in the time-domain leads to samping in the frequency domain (and vice versa)

discrete-time Fourier transform

• for aperiodic sequences x[n]

$$x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(\omega) e^{j\omega n} d\omega \qquad \qquad X(\omega) = \sum_{n=-\infty}^{\infty} x[n] e^{-j\omega n}$$
$$x[n] = \int_{-\frac{1}{2}}^{\frac{1}{2}} X(f) e^{j2\pi f n} df \qquad \qquad X(f) = \sum_{n=-\infty}^{\infty} x[n] e^{-j2\pi f n}$$

- DTFT X(f) is periodic with period 1
- DTFT $X(\omega)$ is periodic with period 2π

$$X(f+k) = \sum_{n} x[n]e^{-j2\pi(f+k)n} = \sum_{n} x[n]e^{-j2\pi fn} \underbrace{e^{-j2\pi kn}}_{1} = X(f)$$

• X(f) is called the spectrum of x[n]; |X(f)| is the magnitude spectrum; $\angle X(f)$ is the phase spectrum

DTFT - CTFS duality

• continuous-time Fourier series for the special case when the period is 1

$$x(t) = \sum_{\substack{k=-\infty\\(\text{synthesis})}}^{\infty} X_k e^{j2\pi kt} \qquad \qquad X_k = \int_{-\frac{1}{2}}^{\frac{1}{2}} x(t) e^{-j2\pi kt} dt$$
(analysis)

• discrete-time Fourier transform has period equal to 1

$$x[n] = \int_{-\frac{1}{2}}^{\frac{1}{2}} X(f) e^{j2\pi f n} df \qquad \qquad X(f) = \sum_{\substack{n=-\infty\\(\text{synthesis})}}^{\infty} x[n] e^{-j2\pi f n} df$$

- $x[n] = X_k|_{k=-n}$
- $X(f) = x(t)|_{t=-f}$

DTFT convergence: three classes of signals

• absolutely summable signals

$$\sum_{n=-\infty}^{\infty} |x[n]| < \infty$$

• energy signals (square summable, finite energy, zero power)

$$\sum_{n=-\infty}^{\infty} |x[n]|^2 < \infty$$

• power signals (mean-square summable, infinte energy, finite power)

$$\lim_{N \to \infty} \frac{1}{2N+1} \sum_{n=-N}^{N} |x[n]|^2 < \infty$$

DTFT convergence

• for the DTFT to exist, the sequence of partial sums

$$X_N(\omega) = \sum_{n=-N}^{N} x[n] e^{-j\omega n}$$

must converge to a finite limit for all ω as $N \to \infty$

• DTFT analysis formula

$$X(\omega) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n} = \lim_{N \to \infty} \sum_{n=-N}^{N} x[n]e^{-j\omega n} = \lim_{N \to \infty} X_N(\omega)$$

DTFT convergence: absolutely summable signals

• suppose x[n] is absolutely summable, i.e. $\sum_{n=-\infty}^{\infty} |x[n]| < \infty$, then

– the DTFT $X(\omega)$ exists because

$$|X(\omega)| = \left|\sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}\right| \le \sum_{n=-\infty}^{\infty} |x[n]| |e^{-j\omega n}| = \sum_{n=-\infty}^{\infty} |x[n]| < \infty$$

– the sequence of partial sums converges uniformly (point-wise) to $X(\omega)$

$$\lim_{N \to \infty} |X_N(\omega) - X(\omega)| = 0 \text{ for all } \omega$$

- the DTFT $X(\omega)$ is a continuous function of ω
- the DTFT $X(\omega)$ is infinitely differentiable, i.e. $\frac{d^k X(\omega)}{d\omega^k}$ exists for all $k \ge 1$
- for absolutely summable signals compute $X(\omega)$ by direct evaluation of the analysis equation

DTFT example: absolutely summable signals

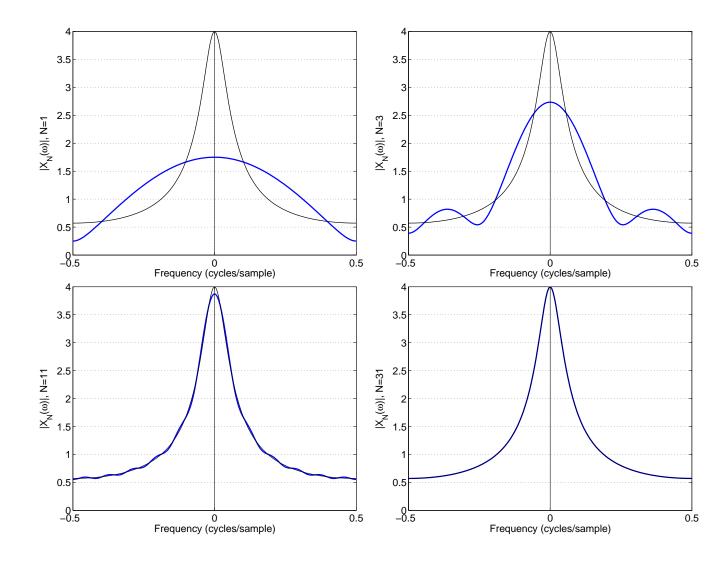
- example: $x[n] = \delta[n] \Rightarrow X(\omega) = 1$
 - -x[n] is absolutely summable
 - is $X(\omega)$ continuous?
 - is $X(\omega)$ infinitely differentiable?
 - is $X(\omega)$ periodic?
- example: x[n] is any finite length signal

$$x(n) = \begin{cases} a_n, & N_0 \le n \le N_1, \\ 0, & \text{otherwise} \end{cases} = \sum_{k=N_0}^{N_1} a_n \delta(n-k) \quad \Rightarrow \quad X(\omega) = \sum_{n=N_0}^{N_1} a_n e^{-j\omega n}$$

- x[n] is absolutely summable
- is $X(\omega)$ continuous?
- is $X(\omega)$ infinitely differentiable?
- is $X(\omega)$ periodic?

DTFT example: absolutely summable signals

- example: $x[n] = a^n u[n]$ where |a| < 1, $X(\omega) = \sum_{n=0}^{\infty} (ae^{-j\omega})^n = \frac{1}{1-ae^{-j\omega}}$
- point-wise convergence of partial sums (N = 1, 3, 11, 31)

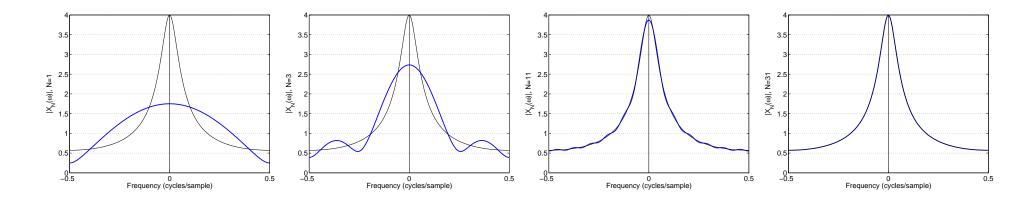


DTFT example: absolutely summable signals

• example:
$$x[n] = a^n u[n]$$
 where $|a| < 1$

$$X(\omega) = \sum_{n=0}^{\infty} (ae^{-j\omega})^n = \frac{1}{1 - ae^{-j\omega}}$$

- x[n] is absolutely summable
- is $X(\omega)$ continuous?
- is $X(\omega)$ infintely differentiable?
- is $X(\omega)$ periodic?
- point-wise convergence of partial sums (N = 1, 3, 11, 31)



DTFT convergence: energy signals

- suppose x[n] is an energy signal, i.e. $\sum_{n=-\infty}^{\infty} |x[n]|^2 < \infty$
- the sequence of partial sums converges in the mean-square sense to $X(\omega)$

$$\lim_{N \to \infty} \int_{-\pi}^{\pi} |X(\omega) - X_N(\omega)|^2 d\omega = 0$$

- the interpretation is that the energy in the error tends to zero as $N \to \infty$
- for energy signals $X(\omega)$ has discontinuities
- at points of discontinuity $\omega,~X_N(\omega)$ converges to the average of the left-hand and right-hand limits
- for energy signals it is often very difficult to compute $X(\omega)$ using the analysis equation
- investigate DTFT pairs using the synthesis equation

DTFT example: energy signals

- example: $x[n] = \frac{\sin \omega_0 n}{\pi n}$
 - this is not absolutely summable
 - this is an energy signal
 - try to compute $X(\omega)$ using the analysis equation

$$X(\omega) = \sum_{n=-\infty}^{\infty} \frac{\sin \omega_0 n}{\pi n} e^{-j\omega n} = ???$$

• compute the inverse-DTFT of the rectangular function

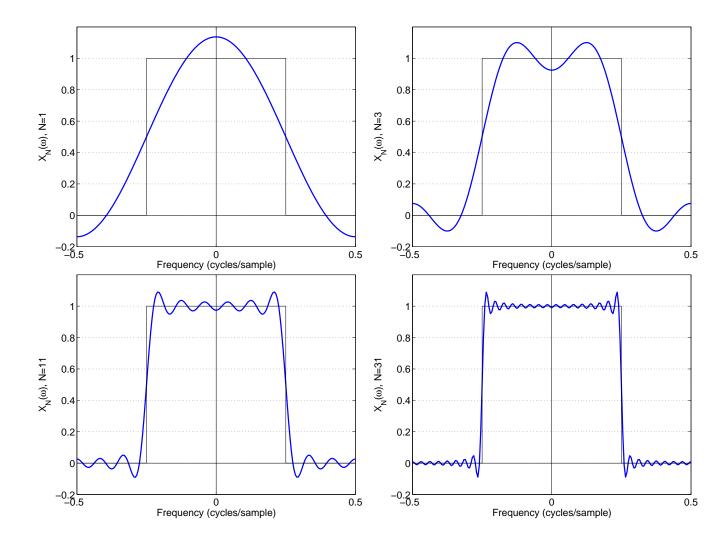
$$X(\omega) = \begin{cases} 1, & |\omega| \le \omega_0 \le \pi\\ 0, & \text{otherwise} \end{cases}$$
$$x[n] = \frac{1}{2\pi} \int_{-\omega_0}^{\omega_0} e^{j\omega n} d\omega = \frac{e^{j\omega_0 n} - e^{-j\omega_0 n}}{j2\pi n} = \frac{\sin \omega_0 n}{\pi n} \text{ for all } n \end{cases}$$

• the inverse-DTFT (synthesis equation) was easy

DTFT example: energy signals

• example:
$$x[n] = \frac{\sin \omega_0 n}{\pi n} \Rightarrow X(\omega) = \begin{cases} 1, & |\omega| \le \omega_0 \le \pi \\ 0, & \text{otherwise} \end{cases}$$

• mean-square convergence of partial sums (N = 1, 3, 11, 31)

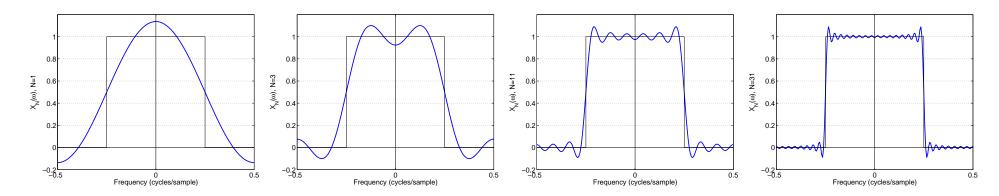


DTFT example: energy signals

• example:

$$x[n] = \frac{\sin \omega_0 n}{\pi n} \Rightarrow \quad X(\omega) = \begin{cases} 1, & |\omega| \le \omega_0 \le \pi \\ 0, & \text{otherwise} \end{cases}$$

- x[n] is an energy signal
- is $X(\omega)$ continuous?
- is $X(\omega)$ infintely differentiable?
- is $X(\omega)$ periodic?
- at points ω of discontinuity, $X_N(\omega)$ converges to average of left-hand and right-hand limits
- the oscillatory behavior of $X_N(\omega)$ near the discontinuity in $X(\omega)$ is referred to as the Gibbs phenomenon



DTFT convergence: power signals

- suppose x[n] is an power signal, i.e. $\lim_{N\to\infty} \frac{1}{2N+1} \sum_{n=-N}^{N} |x[n]|^2 < \infty$
- power signals do not have a DTFT
- by allowing Dirac impulse, $\delta(\omega),$ we can define DTFTs for some power signals: periodic signals, unit step
- for power signals $X(\omega)$ can not be computed by direct application of the analysis equation
- investigate DTFT pairs using the synthesis equation

DTFT example: power signal

• compute the inverse-DTFT of

$$X(\omega) = 2\pi \sum_{k=-\infty}^{\infty} \delta(\omega - 2\pi k)$$

$$\begin{aligned} x[n] &= \frac{1}{2\pi} \int_{-\pi}^{\pi} 2\pi \sum_{k=-\infty}^{\infty} \delta(\omega - 2\pi k) e^{j\omega n} d\omega \\ &= \sum_{k=-\infty}^{\infty} \int_{-\pi}^{\pi} \delta(\omega - 2\pi k) e^{j\omega n} d\omega \\ &= \int_{-\pi}^{\pi} \delta(\omega) e^{j\omega n} d\omega \\ &= e^{j0n} = 1. \end{aligned}$$

• we have derived the DTFT pair: $x[n] = 1 \quad \Leftrightarrow \quad X(\omega) = 2\pi \sum_{k=-\infty}^{\infty} \delta(\omega - 2\pi k)$

DTFT example: power signal

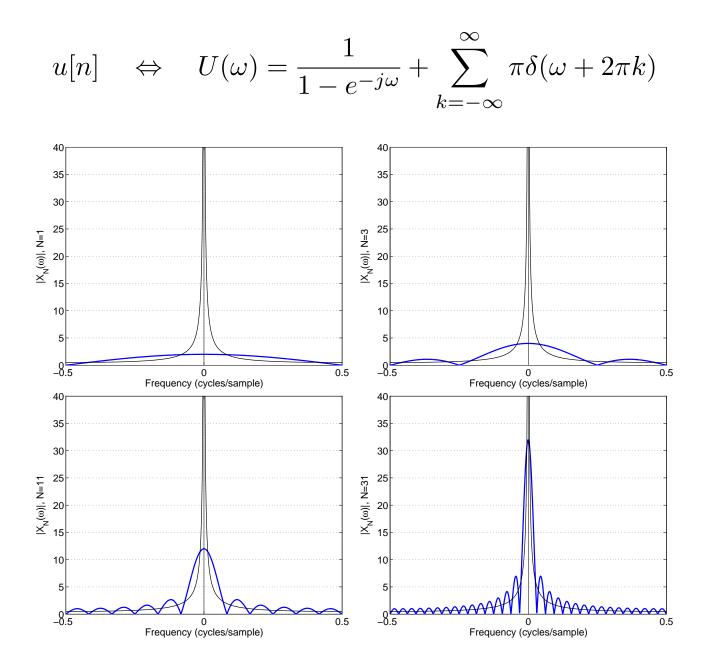
• we can also derive the DTFT pair

$$x[n] = e^{j\omega_0 n} \quad \Leftrightarrow \quad X(\omega) = 2\pi \sum_{k=-\infty}^{\infty} \delta(\omega - \omega_0 - 2\pi k)$$

- -x[n] is a power signal
- is $X(\omega)$ continuous?
- is $X(\omega)$ infintely differentiable?
- does $X(\omega)$ have finite discontinuitites?
- $X(\omega)$ has Dirac delta functions
- is $X(\omega)$ periodic?

DTFT example: power signal

• the unit step function has the DTFT



DTFT convergence

x(n)	$X(\omega)$	Notes
Absolutely summable signals	Uniform convergence	Compute DTFT directly
$\left \sum_{n=-\infty}^{\infty} x(n) < \infty \right $	Continuous $X(\omega)$	
	Differentiable $X(\omega)$	
Energy signals	Mean-square convergence	Verify DTFT by IDTFT
$\left \sum_{n=-\infty}^{\infty} x(n) ^2 < \infty \right.$	Jump discontinuities	
Power signals	May not converge in any sense	Verify DTFT by IDTFT
$\lim_{N \to \infty} \frac{1}{2N+1} \sum_{n=-N}^{N} x(n) ^2 < \infty$	Converges at some frequencies for periodic signals Converges at some	
	frequencies for unit step May include Dirac impulses	

discrete-time Fourier series (DTFS)

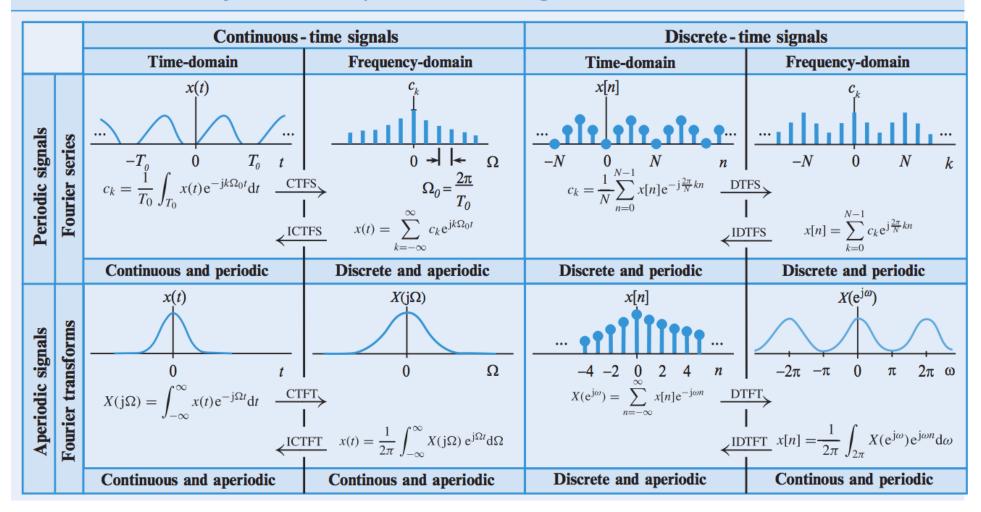
 $\bullet \mbox{ suppose } x[n] \mbox{ is periodic with period } N$

$$x[n] = \sum_{k=0}^{N-1} X_k e^{\frac{j2\pi kn}{N}} \qquad \qquad X_k = \frac{1}{N} \sum_{n=0}^{N-1} x[n] e^{\frac{-j2\pi kn}{N}}$$

- we'll have a lot more to say about the DTFS later when we talk about the discrete Fourier transform (DFT)
- always converges (finite sum of finite numbers)

summary

Table 4.1 Summary of Fourier representation of signals.



- discreteness in one domain leads to periodicity in the other domain
- periodicity in one domain leads to discreteness in the other domain

Parseval relations

CTFS:
$$\frac{1}{T_0} \int_{T_0} |x(t)|^2 dt = \sum_{k=-\infty}^{\infty} |X_k|^2$$

CTFT:
$$\int_{-\infty}^{\infty} |x(t)|^2 dt = \int_{-\infty}^{\infty} |X(F)|^2 dF$$

DTFT:
$$\sum_{n=-\infty}^{\infty} |x[n]|^2 dt = \int_{-1/2}^{1/2} |X(f)|^2 df$$

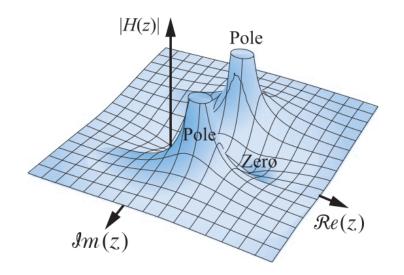
DTFS:
$$\frac{1}{N} \sum_{n=0}^{N-1} |x[n]|^2 = \sum_{k=0}^{N-1} |X_k|^2$$

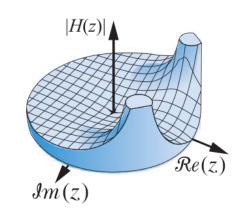
z-transform and DTFT

• compare the *z*-transform and the DTFT

$$X(z) = \sum_{n=\infty}^{\infty} x[n] z^{-n}$$
$$X(\omega) = \sum_{n=\infty}^{\infty} x[n] e^{-j\omega n}$$

- \bullet we see that $X(\omega) = X(z)|_{z=e^{j\omega}}$
- this requires that the region of convergence of X(z) include the unit circle in the z-plane
- only the DTFTs of absolutely summable signals can be generated in this way
- this does not apply to energy signals or power signals





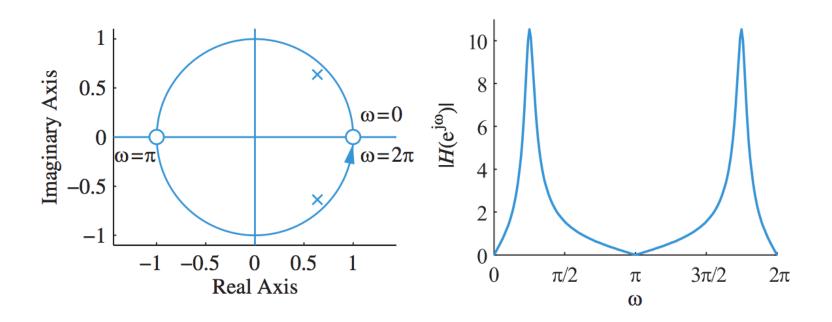


Table 4.3 Symmetry properties of the DTFT.		
Sequence <i>x</i> [<i>n</i>]	Transform $X(e^{j\omega})$	
	Complex signals	
<i>x</i> *[<i>n</i>]	$X^*(e^{-j\omega})$	
$x^*[-n]$	$X^*(e^{j\omega})$	
$x_{\mathrm{R}}[n]$	$X_{\rm e}({\rm e}^{{\rm j}\omega}) \triangleq \frac{1}{2} \left[X({\rm e}^{{\rm j}\omega}) + X^*({\rm e}^{-{\rm j}\omega}) \right]$	
j <i>x</i> I [<i>n</i>]	$X_{0}(e^{j\omega}) \triangleq \frac{1}{2} \left[X(e^{j\omega}) - X^{*}(e^{-j\omega}) \right]$	
$x_{\mathbf{e}}[n] \triangleq \frac{1}{2}(x[n] + x^*[-n])$	$X_{\rm R}({\rm e}^{{\rm j}\omega})$	
$x_{0}[n] \triangleq \frac{1}{2}(x[n] - x^{*}[-n])$	$jX_{I}(e^{j\omega})$	
Real signals		
Any real x[n]	$X(e^{j\omega}) = X^*(e^{-j\omega})$ $X_R(e^{j\omega}) = X_R(e^{-j\omega})$ $X_I(e^{j\omega}) = -X_I(e^{-j\omega})$ $ X(e^{j\omega}) = X(e^{-j\omega}) $ $\angle X(e^{j\omega}) = -\angle X(e^{-j\omega})$	
$x_{e}[n] = \frac{1}{2}(x[n] + x[-n])$ Even part of $x[n]$	$X_{\rm R}({\rm e}^{{\rm j}\omega})$ real part of $X({\rm e}^{{\rm j}\omega})$ (even)	
$x_0[n] = \frac{1}{2}(x[n] - x[-n])$ Odd part of $x[n]$	$jX_{I}(e^{j\omega})$ imaginary part of $X(e^{j\omega})$ (odd)	

DTFT is a 4-way transform

Table 4.2 Special cases of the DTFT for real signals.		
Signal	Fourier transform	
Real and even Real and odd Imaginary and even Imaginary and odd	real and even imaginary and odd imaginary and even real and odd	

$$\begin{aligned} x(n) &= x^{re}(n) + jx^{ie}(n) + x^{ro}(n) + jx^{io}(n) \\ & \downarrow & \downarrow & \\ X(\omega) &= X^{re}(\omega) + jX^{ie}(\omega) + X^{ro}(\omega) + jX^{io}(\omega) \end{aligned}$$