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CT complex exponential: property 1

x(t) = exp(j2πF0t)

• periodic for all frequencies −∞ < F0 <∞

• period T0 = 1/F0

x(t+ T0) = exp(j2πF0(t+ T0))

= exp(j2πF0t)exp(j2πF0T0)︸ ︷︷ ︸
1

= exp(j2πF0t)

= x(t)
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CT complex exponential: property 2

• two complex expoentials with different frequencies are different

• let F1 6= F2, then

x1(t) = exp(j2πF1t) 6= exp(j2πF2t) = x2(t) for all t

• they may be equal at some times, but are not equal everywhere
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CT complex exponential: property 3

x(t) = exp(j2πF0t)

• the rate of oscillation increases indefinitely as F0 →∞ or as T0 → 0
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CT complex exponential: property 4

• a time shift is equivalent to a phase shift

x(t− τ) = exp(j2πF0(t− τ)) = exp(j[2πF0t− ϕ]), ϕ = 2πF0τ

• for every phase shift ϕ there exists a time shift τ
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CT complex exponential: property 5

• infinite number of harmonically related and orthogonal complex exponentials

• let sk(t) = exp(j2πkF0t), k = · · · ,−2,−1, 0, 1, 2, · · ·

∫ T0/2

−T0/2

sk(t)s
∗
m(t)dt =

∫ T0/2

−T0/2

exp(j2πF0[k −m]t)dt

=
exp(j2πF0[k −m]t])

j2πF0[k −m]

∣∣∣∣T0/2

−T0/2

=
1

F0

exp(jπ[k −m])− exp(−jπ[k −m])

2jπ[k −m]

= T0
sin(π[k −m])

π[k −m]

= T0δ[k −m] =

{
T0, k = m,

0, otherwise
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CT complex exponential: property 6

• complex exponentials are eigenfunctions of CT-LTI systems

x(t) = exp(j2πF0t) h(t) y(t) = H(F0) exp(j2πF0t) = H(F0)x(t)

x(t) = exp(j2πF0t)

y(t) = h(t) ∗ x(t) =

∫
h(τ) exp(j2πF0[t− τ ])dτ

=

∫
h(τ) exp(−j2πF0τ)dτ︸ ︷︷ ︸

H(F0)

· exp(j2πF0t)︸ ︷︷ ︸
x(t)

= H(F0)x(t)

• output has same frequency as the input

• only amplitude and phase have changed: H(F0) = |H(F0)| exp(j∠H(F0))

6



DT complex exponentials

• can be obtained by periodically sampling CT complex exponentials

• let Fs = 1
Ts

be the sample rate/sample frequency

• sample times t = nTs

x[n] = x(t)|t=nTs = exp(j2πF0Tsn) = exp(j2πf0n)

f0 = F0Ts =
F0

Fs
normalized (cyclic) frequency [cycles/sample]

ω0 = 2πf0 = 2π
Ω0

Fs
= 2πΩ0Ts normalized frequency [rads/sample]
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CT versus DT complex exponentials

• CT complex exponential: x(t) = exp(j2πF0t)

– continuous frequency variable
– continuous time variable

• DT complex exponential: x[n] = exp(j2πf0n)

– continuous frequency variable
– discrete time variable

• the behavior is quite different due to discreteness of time
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DT complex exponential: property 1

x[n] = exp(j2πf0n)

• periodic only for rational frequencies f0 = k
N

• period N

x[n+N ] = exp(j2πf0(n+N))

= exp(j2πf0n) exp(j2πf0N) = x[n] exp(j2πf0N)

• for x[n] to be periodic with period N , we must have

exp(j2πf0N) = 1 ⇒ f0N = k (integer)

9



• f = k/N where k and N are relatively prime, i.e. gcd(k,N) = 1

f0 =
F0

Fs
=
Ts
T0

=
k

N

kT0 = NTs (CT-CE complets k periods in N samples)

kFs = NF0 (N th harmonic of CT-CE is a multiple of the sample rate)

k/Ts = N/T0 (num. samples/period multiple of num. samples/sec.)
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DT complex exponential: property 2

• non-uniqueness of DT-CE

• DT-CE are periodic in the frequency variable

exp(j2π[f0 + k]n) = exp(j2πf0n)exp(j2πkn)︸ ︷︷ ︸
1

= exp(j2πf0n)

• f0 and f0 + k are the same frequency (for any integer k)

• ω0 and ω0 + 2πk are the same frequency

• exp(j2πf0n) is periodic in f0 with period 1

• exp(jω0n) is periodic in ω0 with period 2π

• let x1[n] = exp(j2πf1n) and x2[n] = exp(j2πf2n), if f2 = f1 + k then

x1[n] = x2[n] for all n
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• distinct frequencies lie in a fundamental interval (fundamental range)

f ∈ [0, 1) or [−1
2,

1
2)

ω ∈ [0, 2π) or [−π, π)
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CT complex exponential: property 3

x[n] = exp(j2πf0n)

• the rate of oscillation does not increase indefinitely

• assuming fundamental range [0, 1), rate of oscillation increases from 0 to 1
2, and

then it decreases from 1
2 to 1

• “low” frequencies near 0 and ±1 and ±2 and ±3 and ...

• “high” frequencies near ±1
2 and ±3

2 and ±5
2 and ...

(half way in between the low frequencies)
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CT complex exponential: property 4

• a time shift is equivalent to a phase shift

x[n− n0] = exp(j2πf0[n− n0]) = exp(j[2πf0n− ϕ]), ϕ = 2πf0n0

• not all phase shifts correspond to integer sample shifts
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CT complex exponential: property 5

• finite number of harmonically related and orthogonal complex exponentials

• let sk[n] = exp(j2π(k/N)n) be a periodic DT-CE

• (k/N) and (k/N) + 1 = (k +N)/N give the same sequence

• there are only N harmonically related DT-CE sequences, sk[n], k = 0, 1, · · · , N−1

• they are orthogonal

N−1∑
n=0

sk[n]s∗m[n] =

N−1∑
n=0

exp

(
j2π[k −m]n

N

)
=

1− exp(j2π[k −m])

1− exp
(
j2π[k−m]

N

)
=

exp(jπ[k −m])− exp(−jπ[k −m])

exp
(
jπ[k−m]

N

)
− exp

(
−jπ[k−m]

N

) exp

(
−jπ[k −m][N − 1]

N

)

=
sin(π[k −m])

sin(π[k −m]/N)
exp

(
−jπ[k −m][N − 1]

N

)
= Nδ[m− k]
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• here is a useful identity that is easily verified by multiplication

exp(jA)− exp(jB) =

[
exp

(
j
A+B

2

)
− exp

(
−jA+B

2

)]
exp

(
j
A−B

2

)
= 2j sin

(
A+B

2

)
exp

(
j
A−B

2

)
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DT complex exponential: property 6

• complex exponentials are eigenfunctions of DT-LTI systems

x[n] = exp(j2πf0n) h[n] y[n] = H(f0) exp(j2πf0n) = H(f0)x[n]

x[n] = exp(j2πf0n)

y[n] = h[n] ∗ x[n] =
∑

h[k] exp(j2πf0[n− k])

=
∑

h[k] exp(−j2πf0k)︸ ︷︷ ︸
H(f0)

· exp(j2πf0n)︸ ︷︷ ︸
x[n]

= H(f0)x[n]

• output has same frequency as the input

• only amplitude and phase have changed: H(f0) = |H(f0)| exp(j∠H(f0))
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frequency aliases of f ′0

• fundamental range: [0, 1)

– take the fractional part: f0 = f ′0 − bf ′0c
– ex: f ′0 = 36.1 aliases to f0 = 0.1 which is a low frequency
– ex: f ′0 = 36.9 aliases to f0 = 0.9 which is a low frequency

• fundamental range: [−0.5, 0.5)

– take the fractional part: f0 = f ′0 −
⌊
f ′0 + 1

2

⌋
– ex: f ′0 = 36.1 aliases to f0 = 0.1 which is a low frequency
– ex: f ′0 = 36.9 aliases to f0 = −0.1 which is a low frequency

• the basic idea is to keep subtracting 1 from f ′0 until the answer falls into the
fundamental range
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frequency aliases when sampling

• Q: a sinusoid with frequency F ′0 is sampled at a rate Fs, what is the perceived
frequency?

F ′0 f ′0 =
F ′0
Fs

f0 = f ′0 − bf ′0 + 0.5cF0 = f0Fs

sampled at Fs

alias

perceived as

f0 =
F ′0
Fs
−
⌊
F ′0
Fs

+
1

2

⌋
F0 = F ′0 − Fs

⌊
F ′0
Fs

+
1

2

⌋
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DT complex exponential: property 7

• small changes in frequency can lead to large changes in the period

• ex: cos(2π(12/36)n) = cos(2πn/3) has frequency 12/36 = 1/3 and fundamental
period N = 3

• ex: cos(2π(13/36)n) has frequency 13/36 and fundamental period N = 36

• Q: what is going on here?

• A1: the “envelope” (CT-sinusoid) of the signal changes only slightly in these
examples

• A2: whether the sampled signal repeats (periodic) or not depends on the relation
between the sample rate and the frequency
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continuous-time Fourier series

• for periodic signals x(t)

x(t) =

∞∑
k=−∞

Xke
j2πkt/T Xk =

1

T

∫ t0+T

t0

x(t)e−j2πkt/Tdt

• consider the special case when the period is T = 1

x(t) =

∞∑
k=−∞

Xke
j2πkt Xk =

∫ 1
2

−1
2

x(t)e−j2πktdt

21



Dirichlet (sufficient) conditions

1.
∫
T
|x(t)|dt <∞ ⇒ |Xk| <∞

2. x(t) has a finite number of maxima and minima in any period

3. x(t) has a finite number of discontinuities in any period

• if these conditions are satisfied, then Fourier sum converges to x(t) at all points
where x(t) is continuous and converges to the average value of the right-hand
and left-hand limits at points where x(t) is discontinuous

• necessary conditions are not known

• every physically real periodic signal satisfies 1, 2, 3

• every physically real periodic signal has CTFS

• sometimes CTFS can be calculated by hand

• most of the time CTFS is evaluated numerically
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continuous-time Fourier transform

• for aperiodic signals x(t)

x(t) =
1

2π

∫ ∞
−∞

X(Ω)ejΩtdΩ X(Ω) =

∫ ∞
−∞

x(t)e−jΩtdt

x(t) =

∫ ∞
−∞

X(F )ej2πFtdF X(F ) =

∫ ∞
−∞

x(t)e−j2πFtdt
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Dirichlet (sufficient) conditions

1.
∫
|x(t)|dt <∞ ⇒ |X(F )| <∞

2. x(t) has a finite number of maxima and minima

3. x(t) has a finite number of discontinuities

• if these conditions are satisfied, then Fourier integral converges to x(t) at all
points where x(t) is continuous and converges to the average value of the
right-hand and left-hand limits at points where x(t) is discontinuous

• necessary conditions are not known

• every physically real signal satisfies 1, 2, 3

• every physically real signal has CTFT

• sometimes CTFT can be calculated by hand

• most of the time CTFT is evaluated numerically
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CTFT pairs

x(t) X(Ω) X(F )

δ(t) 1 ???

1 2πδ(Ω)

δ(t− t0) e−jΩt0

ejΩ0t 2πδ(Ω− Ω0)

cos(Ω0t) π[δ(Ω− Ω0) + δ(Ω + Ω0)]

sin(Ω0t) jπ[−δ(Ω− Ω0) + δ(Ω + Ω0)]

u(t) πδ(Ω) +
1

jΩ

δ(t)−
1

jt
2πu(Ω)

sgn(t)
2

jΩ1, |t| ≤ t0

0, |t| > t0

2 sin(Ωt0)

Ω

sin(Ω0t)

πt

1, |Ω| ≤ Ω0

0, |Ω| > Ω0
∞∑

n=−∞
δ(t− nT )

2π

T

∞∑
k=−∞

δ

(
Ω−

2π

T
k

)

e
− t2

2σ2
√

2πσ2e
−σ

2ω2

2
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CTFT of periodic signals

• let x(t) have finite energy and be aperiodic

• y(t) =
∑
n x(t− nT0) is periodic with period T0

• write it as a convolution:

y(t) = x(t) ∗
∑
n

δ(t− nT0) (1)

• note that the CTFT of
∑
n δ(t− nT0) is F0

∑
k δ(F − kF0), F0 = 1/T0

• take CTFT of both sides of (1)

Y (F ) = X(F ) · F0

∑
k

δ(F − kF0) = F0

∑
k

X(kF0)δ(F − kF0)

• periodic in time-domain leads to weighted impulse train in the frequency-domain
(and vice versa)

• periodic replication in the time-domain leads to samping in the frequency domain
(and vice versa)
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discrete-time Fourier transform

• for aperiodic sequences x[n]

x[n] =
1

2π

∫ π

−π
X(ω)ejωndω X(ω) =

∞∑
n=−∞

x[n]e−jωn

x[n] =

∫ 1
2

−1
2

X(f)ej2πfndf X(f) =

∞∑
n=−∞

x[n]e−j2πfn

• DTFT X(f) is periodic with period 1

• DTFT X(ω) is periodic with period 2π

X(f + k) =
∑
n

x[n]e−j2π(f+k)n =
∑
n

x[n]e−j2πfne−j2πkn︸ ︷︷ ︸
1

= X(f)

• X(f) is called the spectrum of x[n]; |X(f)| is the magnitude spectrum; ∠X(f)
is the phase spectrum
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DTFT - CTFS duality

• continuous-time Fourier series for the special case when the period is 1

x(t) =

∞∑
k=−∞

Xke
j2πkt

(synthesis)

Xk =

∫ 1
2

−1
2

x(t)e−j2πktdt

(analysis)

• discrete-time Fourier transform has period equal to 1

x[n] =

∫ 1
2

−1
2

X(f)ej2πfndf

(synthesis)

X(f) =

∞∑
n=−∞

x[n]e−j2πfn

(analysis)

• x[n] = Xk|k=−n

• X(f) = x(t)|t=−f
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DTFT convergence: three classes of signals

• absolutely summable signals

∞∑
n=−∞

|x[n]| <∞

• energy signals (square summable, finite energy, zero power)

∞∑
n=−∞

|x[n]|2 <∞

• power signals (mean-square summable, infinte energy, finite power)

lim
N→∞

1

2N + 1

N∑
n=−N

|x[n]|2 <∞
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DTFT convergence

• for the DTFT to exist, the sequence of partial sums

XN(ω) =

N∑
n=−N

x[n]e−jωn

must converge to a finite limit for all ω as N →∞

• DTFT analysis formula

X(ω) =

∞∑
n=−∞

x[n]e−jωn = lim
N→∞

N∑
n=−N

x[n]e−jωn = lim
N→∞

XN(ω)
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DTFT convergence: absolutely summable signals

• suppose x[n] is absolutely summable, i.e.
∑∞
n=−∞ |x[n]| <∞, then

– the DTFT X(ω) exists because

|X(ω)| =

∣∣∣∣∣
∞∑

n=−∞
x[n]e−jωn

∣∣∣∣∣ ≤
∞∑

n=−∞
|x[n]| |e−jωn| =

∞∑
n=−∞

|x[n]| <∞

– the sequence of partial sums converges uniformly (point-wise) to X(ω)

lim
N→∞

|XN(ω)−X(ω)| = 0 for all ω

– the DTFT X(ω) is a continuous function of ω

– the DTFT X(ω) is infinitely differentiable, i.e. dkX(ω)

dωk
exists for all k ≥ 1

• for absolutely summable signals compute X(ω) by direct evaluation of the analysis
equation
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DTFT example: absolutely summable signals

• example: x[n] = δ[n] ⇒ X(ω) = 1

– x[n] is absolutely summable
– is X(ω) continuous?
– is X(ω) infintely differentiable?
– is X(ω) periodic?

• example: x[n] is any finite length signal

x(n) =

{
an, N0 ≤ n ≤ N1,

0, otherwise
=

N1∑
k=N0

anδ(n− k) ⇒ X(ω) =

N1∑
n=N0

ane
−jωn

– x[n] is absolutely summable
– is X(ω) continuous?
– is X(ω) infintely differentiable?
– is X(ω) periodic?
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DTFT example: absolutely summable signals

• example: x[n] = anu[n] where |a| < 1, X(ω) =
∑∞
n=0(ae−jω)n = 1

1−ae−jω

• point-wise convergence of partial sums (N = 1, 3, 11, 31)
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DTFT example: absolutely summable signals

• example: x[n] = anu[n] where |a| < 1

X(ω) =

∞∑
n=0

(ae−jω)n =
1

1− ae−jω

– x[n] is absolutely summable
– is X(ω) continuous?
– is X(ω) infintely differentiable?
– is X(ω) periodic?

• point-wise convergence of partial sums (N = 1, 3, 11, 31)
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DTFT convergence: energy signals

• suppose x[n] is an energy signal, i.e.
∑∞
n=−∞ |x[n]|2 <∞

• the sequence of partial sums converges in the mean-square sense to X(ω)

lim
N→∞

∫ π

−π
|X(ω)−XN(ω)|2 dω = 0

• the interpretation is that the energy in the error tends to zero as N →∞

• for energy signals X(ω) has discontinuities

• at points of discontinuity ω, XN(ω) converges to the average of the left-hand
and right-hand limits

• for energy signals it is often very difficult to compute X(ω) using the analysis
equation

• investigate DTFT pairs using the synthesis equation
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DTFT example: energy signals

• example: x[n] = sinω0n
πn

– this is not absolutely summable
– this is an energy signal
– try to compute X(ω) using the analysis equation

X(ω) =

∞∑
n=−∞

sinω0n

πn
e−jωn = ???

• compute the inverse-DTFT of the rectangular function

X(ω) =

{
1, |ω| ≤ ω0 ≤ π
0, otherwise

x[n] =
1

2π

∫ ω0

−ω0

ejωndω =
ejω0n − e−jω0n

j2πn
=

sinω0n

πn
for all n

• the inverse-DTFT (synthesis equation) was easy
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DTFT example: energy signals

• example: x[n] =
sinω0n

πn
⇒ X(ω) =

{
1, |ω| ≤ ω0 ≤ π
0, otherwise

• mean-square convergence of partial sums (N = 1, 3, 11, 31)
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DTFT example: energy signals

• example:

x[n] =
sinω0n

πn
⇒ X(ω) =

{
1, |ω| ≤ ω0 ≤ π
0, otherwise

– x[n] is an energy signal
– is X(ω) continuous?
– is X(ω) infintely differentiable?
– is X(ω) periodic?
– at points ω of discontinuity, XN(ω) converges to average of left-hand and

right-hand limits
– the oscillatory behavior of XN(ω) near the discontinuity in X(ω) is referred to

as the Gibbs phenomenon

−0.5 0 0.5
−0.2

0

0.2

0.4

0.6

0.8

1

Frequency (cycles/sample)

X
N
(ω

),
 N

=
1

−0.5 0 0.5
−0.2

0

0.2

0.4

0.6

0.8

1

Frequency (cycles/sample)

X
N
(ω

),
 N

=
3

−0.5 0 0.5
−0.2

0

0.2

0.4

0.6

0.8

1

Frequency (cycles/sample)

X
N
(ω

),
 N

=
11

−0.5 0 0.5
−0.2

0

0.2

0.4

0.6

0.8

1

Frequency (cycles/sample)

X
N
(ω

),
 N

=
31

38



DTFT convergence: power signals

• suppose x[n] is an power signal, i.e. limN→∞
1

2N+1

∑N
n=−N |x[n]|2 <∞

• power signals do not have a DTFT

• by allowing Dirac impulse, δ(ω), we can define DTFTs for some power signals:
periodic signals, unit step

• for power signals X(ω) can not be computed by direct application of the analysis
equation

• investigate DTFT pairs using the synthesis equation
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DTFT example: power signal

• compute the inverse-DTFT of

X(ω) = 2π

∞∑
k=−∞

δ(ω − 2πk)

x[n] =
1

2π

∫ π

−π
2π

∞∑
k=−∞

δ(ω − 2πk)ejωndω

=

∞∑
k=−∞

∫ π

−π
δ(ω − 2πk)ejωndω

=

∫ π

−π
δ(ω)ejωndω

= ej0n = 1.

• we have derived the DTFT pair: x[n] = 1 ⇔ X(ω) = 2π
∑∞
k=−∞ δ(ω−2πk)
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DTFT example: power signal

• we can also derive the DTFT pair

x[n] = ejω0n ⇔ X(ω) = 2π

∞∑
k=−∞

δ(ω − ω0 − 2πk)

– x[n] is a power signal
– is X(ω) continuous?
– is X(ω) infintely differentiable?
– does X(ω) have finite discontinuitites?
– X(ω) has Dirac delta functions
– is X(ω) periodic?
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DTFT example: power signal
• the unit step function has the DTFT

u[n] ⇔ U(ω) =
1

1− e−jω
+

∞∑
k=−∞

πδ(ω + 2πk)
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DTFT convergence

x(n) X(ω) Notes

Absolutely summable signals Uniform convergence Compute DTFT

directly
∞∑

n=−∞
|x(n)| <∞ Continuous X(ω)

Differentiable X(ω)

Energy signals Mean-square

convergence

Verify DTFT by

IDTFT
∞∑

n=−∞
|x(n)|2 <∞ Jump discontinuities

Power signals May not converge in any

sense

Verify DTFT by

IDTFT

lim
N→∞

1

2N + 1

N∑
n=−N

|x(n)|2 <∞ Converges at some

frequencies for periodic

signals

Converges at some

frequencies for unit step

May include Dirac

impulses
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discrete-time Fourier series (DTFS)

• suppose x[n] is periodic with period N

x[n] =

N−1∑
k=0

Xke
j2πkn
N Xk =

1

N

N−1∑
n=0

x[n]e
−j2πkn
N

• we’ll have a lot more to say about the DTFS later when we talk about the
discrete Fourier transform (DFT)

• always converges (finite sum of finite numbers)
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summary

• discreteness in one domain leads to periodicity in the other domain

• periodicity in one domain leads to discreteness in the other domain
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Parseval relations

CTFS:
1

T0

∫
T0

|x(t)|2dt =

∞∑
k=−∞

|Xk|2

CTFT:

∫ ∞
−∞
|x(t)|2dt =

∫ ∞
−∞
|X(F )|2dF

DTFT:
∞∑

n=−∞
|x[n]|2dt =

∫ 1/2

−1/2

|X(f)|2df

DTFS:
1

N

N−1∑
n=0

|x[n]|2 =

N−1∑
k=0

|Xk|2
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z-transform and DTFT

• compare the z-transform and the DTFT

X(z) =

∞∑
n=∞

x[n]z−n

X(ω) =

∞∑
n=∞

x[n]e−jωn

• we see that X(ω) = X(z)|z=ejω

• this requires that the region of convergence of X(z) include the unit circle in the
z-plane

• only the DTFTs of absolutely summable signals can be generated in this way

• this does not apply to energy signals or power signals
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DTFT is a 4-way transform

x(n) = xre(n) + jxie(n) + xro(n) + jxio(n)

X(ω) = Xre(ω) + jXie(ω) + Xro(ω) + jXio(ω)
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