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CT complex exponential: property 1

x(t) = exp(j2mFyt)
e periodic for all frequencies —oco < Fj < 00

[ period TO = 1/F0

x(t + T()) = exp(j27rF0(t + To))

= eXp(jQT('FQt)gxp(jQﬂ'FOTol
1

= exp(j2mFyt)
= x(t)



CT complex exponential: property 2

e two complex expoentials with different frequencies are different

o let F1 7& FQ, then

CBl(t) = 6Xp<j27TF1t) # 6Xp<j27TF2t) = ZIJQ(t) for all t

e they may be equal at some times, but are not equal everywhere



CT complex exponential: property 3

x(t) = exp(j2mFyt)

e the rate of oscillation increases indefinitely as Fy — oo or as 1Ty — 0O



CT complex exponential: property 4

e a time shift is equivalent to a phase shift

x(t —7) =exp(j2nFo(t — 7)) = exp(j[2nFot — ¢]), @ =27FyT

e for every phase shift ¢ there exists a time shift 7



CT complex exponential: property 5

e infinite number of harmonically related and orthogonal complex exponentials

o let si(t) = exp(y2mkFpt), k=---,-2,—-1,0,1,2,---

To/2 To/2
/ si(t)s; (t)dt = / exp(j2m Fylk — m]t)dt

—Ty/2 —To/2
_exp(j2rFylk — mit]) To/2

1 exp(jn[k — m]) — exp(—jn[k —m])
FO 2]7T[]€ — m]

_ Tosin(w[k — m])

|k —m)]

T07 k= m,
0, otherwise

:T()(S[k—m] :{



CT complex exponential: property 6

e complex exponentials are eigenfunctions of CT-LTI systems

x(t) = exp(j2rFot) ——{ h(t) —— y(t) = H(Fy) exp(j2nFot) = H(Fy)x(t)

x(t) = exp(j2m Fpt)

y(t) = h(t) x x(t) = /h(T) exp(j2wFy|t — 7])dT

— /h(T) exp(—j2nFor)dr - exp(j2nFot) = H(Fo)xz(t)

) HE%O) ’ #0)

e output has same frequency as the input

e only amplitude and phase have changed: H(F,) = |H(Fp)|exp(j£ZH(Fy))



DT complex exponentials

e can be obtained by periodically sampling CT complex exponentials

o let I, = Tis be the sample rate/sample frequency

e sample times t = nTj

z[n] = x(t)|,—, . = exp(j2rFoTsn) = exp(j2m fon)

F

fO = FoTls = f(:
Qp .

wo = 27 fo = QWF = 21 QT normalized frequency [rads/sample]

normalized (cyclic) frequency [cycles/sample]



CT versus DT complex exponentials

e CT complex exponential: x(t) = exp(j2m Fyt)
— continuous frequency variable
— continuous time variable

e DT complex exponential: z[n| = exp(j27 fon)
— continuous frequency variable

— discrete time variable

e the behavior is quite different due to discreteness of time



DT complex exponential: property 1

x[n] = exp(j2m fon)
e periodic only for rational frequencies fy = L.

N

e period N

z[n 4+ N| = exp(j27 fo(n + N))
= exp(j2m fon) exp(j27 folN) = z[n] exp(j2m foN)

e for x|[n| to be periodic with period N, we must have

exp(j2nfoN) =1 = foN =k (integer)



o f=Fk/N where k and N are relatively prime, i.e. gcd(k, N) =1

Fo T k
fO p— j— p—
F, Ty N
kTo = NTs (CT-CE complets k periods in [N samples)

kFy = NFy (Nth harmonic of CT-CE is a multiple of the sample rate)

k/Ts = N/Ty (num. samples/period multiple of num. samples/sec.)



DT complex exponential: property 2

non-uniqueness of DT-CE

DT-CE are periodic in the frequency variable

exp(j2r(fo + kn) = exp(j2m fon)exp(j2rkn) = exp(j2m fon)
1

fo and fy + k are the same frequency (for any integer k)

wo and wg + 27k are the same frequency

exp(j2m fon) is periodic in fy with period 1

exp(jwon) is periodic in wy with period 27

let x1[n] = exp(j27fin) and z3[n| = exp(j27 fon), if fo = f1 + k then

x1|n| = xo|n] for all n



e distinct frequencies lie in a fundamental interval (fundamental range)
11
f [07 or [_57 §)

W 0 T

S 1)
e 0,2m) or [—



CT complex exponential: property 3

z[n] = exp(j2m fon)
the rate of oscillation does not increase indefinitely

assuming fundamental range [0, 1), rate of oscillation increases from 0 to % and
then it decreases from % to 1

“low” frequencies near 0 and £1 and 2 and £3 and ...

“high” frequencies near i% and i% and ig and ...
(half way in between the low frequencies)



CT complex exponential: property 4

e a time shift is equivalent to a phase shift

x[n — ng| = exp(j27 fo[n — nol) = exp(j[2m fon — |), @ = 27 fong

e not all phase shifts correspond to integer sample shifts



CT complex exponential: property 5

finite number of harmonically related and orthogonal complex exponentials

let six|n| = exp(j27(k/N)n) be a periodic DT-CE

(k/N) and (k/N)+ 1= (k+ N)/N give the same sequence

there are only N harmonically related DT-CE sequences, si[n],k =0,1,--- , N—1

they are orthogonal

e R =

exp(gw[k m)) — eez]g;(( ]ZT[]Z m?;]) exp (—jﬂ[k —]7\7;] N — 1])

_ Sln( [ ]) exp( ]W[k m][N_ 1]) _ Né[m—k]

N



e here is a useful identity that is easily verified by multiplication

exp(jA) — exp(jB) = [exp (J i B) — oxp (—f" = B)] o (j = B)

..(A+B> (A—B)
= 27 sin 5 exp | J 5




DT complex exponential: property 6

e complex exponentials are eigenfunctions of DT-LTI systems

z[n] = exp(j2n fon) ——| h{n| —— y[n| = H(fy) exp(j2n fon) = H(fo)x[n]

zln] = eXp(j%fon)

yln] = hn] = > hlk]exp(j2m foln — k])
= Z h|k] exp(—j27rf0/€2 ' §Xp(j37f0n2 = H(fo)z|n]
H(fo) win

e output has same frequency as the input

e only amplitude and phase have changed: H(fy) = |H(fo)|exp(7ZH(fo))



frequency aliases of f

e fundamental range: [0, 1)

— take the fractional part: fo = f§ — [ fi]
— ex: fj =36.1 aliases to fy = 0.1 which is a low frequency
— ex: fj = 36.9 aliases to fo = 0.9 which is a low frequency

e fundamental range: [—0.5,0.5)

— take the fractional part: fo = f — {f(’) + %J
— ex: f) = 36.1 aliases to fo = 0.1 which is a low frequency
— ex: f)=36.9 aliases to fy = —0.1 which is a low frequency

e the basic idea is to keep subtracting 1 from f} until the answer falls into the
fundamental range



frequency aliases when sampling

e Q: a sinusoid with frequency F}) is sampled at a rate F§, what is the perceived
frequency?

sampled at Fj 7
F(/) > fé — 20

alias

perceived as
Fo = fOFS <

fo= 1= Lfs+0.5

E, |F, 1 F, 1
=0 _ |84 Fo=F,—F, |2+ -
Jo=F {FSJFQ 00 F, 2



DT complex exponential: property 7

small changes in frequency can lead to large changes in the period

ex: cos(2m(12/36)n) = cos(2mn/3) has frequency 12/36 = 1/3 and fundamental
period N =3

ex: cos(2m(13/36)n) has frequency 13/36 and fundamental period N = 36
Q: what is going on here?

Al: the “envelope” (CT-sinusoid) of the signal changes only slightly in these
examples

A2: whether the sampled signal repeats (periodic) or not depends on the relation
between the sample rate and the frequency



continuous-time Fourier series

e for periodic signals x(t)

o . 1 [totT .
x(t) = Z X, el 2mkt/T X = T/ x(t)e_Jzﬂkt/Tdt
to

k=—o0

e consider the special case when the period is T =1

00 1
. 2 |
x(t) = g X, ekt Xk :/ r(t)e I2mR

N|—

k=—o0



Dirichlet (sufficient) conditions

o lz@)|dt <oo = | Xk < o0
. x(t) has a finite number of maxima and minima in any period

. x(t) has a finite number of discontinuities in any period

if these conditions are satisfied, then Fourier sum converges to x(t) at all points
where x(t) is continuous and converges to the average value of the right-hand
and left-hand limits at points where x(t) is discontinuous

necessary conditions are not known

every physically real periodic signal satisfies 1, 2, 3

every physically real periodic signal has CTFS

sometimes CTFS can be calculated by hand

most of the time CTFS is evaluated numerically



continuous-time Fourier transform

e for aperiodic signals x(t)
1 [ :
o(t) = o / X ()2 d0 X(Q) =
T J -

z(t) = /_ h X(F)e* Ftqp X(F) =



Dirichlet (sufficient) conditions

L [|z(t)]dt <o = |X(F)| <o
2. xz(t) has a finite number of maxima and minima

3. x(t) has a finite number of discontinuities

e if these conditions are satisfied, then Fourier integral converges to x(t) at all
points where x(t) is continuous and converges to the average value of the
right-hand and left-hand limits at points where z(t) is discontinuous

e necessary conditions are not known

e every physically real signal satisfies 1, 2, 3

e every physically real signal has CTFT

e sometimes CTFT can be calculated by hand

e most of the time CTFT is evaluated numerically



CTFT pairs

z(t) X(Q) X(F)
5(t) 1 777
1 278 (€2)
5(t — to) e JSH0
eI 820t 276(2 — Qo)
cos(Qot) w[6(Q2 — Qo) + (2 4+ Qp)]
sin(Qqt) Jm[—=30(Q2 —1 Q0) + 6(2 + Q)]
u(t) wé(Q) + —
1 70
o -
sgn 0
1, |t] <tg 2 sin(Qtg)
0, |[t| > tg {2
sin(Q0t) 1,10l < 9
it o, |Q| > Qq
o0
> 8(t—nT) Z <Q - —k)
n=—oo k=—o0
_ 1% o2w?
e 202 V 2mole” 2




CTFT of periodic signals

let 2(t) have finite energy and be aperiodic
y(t) = > x(t —nlp) is periodic with period T

write it as a convolution:

y(t) = z(t) * Y 6(t —nTy) (1)

note that the CTFT of > d(t —nTy) is Fo ), 0(F — kFy), Fo=1/Tp
take CTFT of both sides of (1)

Y(F)=X(F)-Fo Y §(F —kFy)=Fy Y X(kFp)d(F — kFy)

periodic in time-domain leads to weighted impulse train in the frequency-domain
(and vice versa)

periodic replication in the time-domain leads to samping in the frequency domain
(and vice versa)



discrete-time Fourier transform

e for aperiodic sequences x|n]

z[n] :%/_W X (w) e duw Xw)= Y anjen
o = [ X (e nds X(f)= 3 afnle sz

e DTFT X(f) is periodic with period 1

e DTFT X (w) is periodic with period 27

X(f 4+ k) _ Zaj[n]e—j%r(f—l—k)n — Z$[n]€_j2ﬂfn€_j2ﬁkm _ X(f)

n n 1

e X(f) is called the spectrum of xz[n|; | X (f)| is the magnitude spectrum; /X (f)
is the phase spectrum



DTFT - CTFS duality

e continuous-time Fourier series for the special case when the period is 1

o0 1
. 2 .
:C(t) _ Z Xk6327rkt X, = / x(t)e—j2wktdt
k=—oc0 —%
(synthesis) (analysis)

e discrete-time Fourier transform has period equal to 1

1 o0

2 . )
zn] = / X(f)e?mIndf X(f)= > =zmnle /"

1

—3 n=-—oo

(synthesis) (analysis)



DTFT convergence: three classes of signals

e absolutely summable signals

o

Z |z [n]| < oo

n——~oo

e energy signals (square summable, finite energy, zero power)
©.@)

Z z[n]|? < oo

n=—oo

e power signals (mean-square summable, infinte energy, finite power)

. 1 2
A oy 2l <o

n=-—



DTFT convergence

e for the DTFT to exist, the sequence of partial sums

Xny(w) = Z z[n]e v

must converge to a finite limit for all w as N — oo

e DTFT analysis formula

X(w) = Z z[nle 7" = lim r[nle 7" = lim Xy (w)

N — o0 N — o0



DTFT convergence: absolutely summable signals

oo
n=——oo

suppose x[n] is absolutely summable, i.e. > |z[n]|| < oo, then

— the DTFT X (w) exists because

o0

Z z[n]e en

n=—oo

oo oo

< 3 falnllle = 3 feln) < o

n——oo nN—=——oo

[ X (w)] =

— the sequence of partial sums converges uniformly (point-wise) to X (w)

lim [ Xy(w) — X(w)| =0 forall w

N — o0

— the DTFT X (w) is a continuous function of w

k
— the DTFT X (w) is infinitely differentiable, i.e. dX—S;U) exists for all £ > 1
dw

for absolutely summable signals compute X (w) by direct evaluation of the analysis
equation



DTFT example: absolutely summable signals

example: z[n| =4d[n] = X(w)=1

— x[n] is absolutely summable

— is X (w) continuous?

— is X (w) infintely differentiable?
— is X (w) periodic?

example: x[n] is any finite length signal

N1 N1
ny No<n <N, .
I(n) — a 0> n = 4Vl — E an5<n _ k) = X(Cd) — E Q€ Jwn
0, otherwise —
k=Ng n=Ng

— x[n] is absolutely summable

— is X (w) continuous?

— is X (w) infintely differentiable?
— is X (w) periodic?



DTFT example: absolutely summable signals

o example: z[n] = a"u[n] where |a| < 1, X(w) => "

nzo(ae—jw)n —

e point-wise convergence of partial sums (N =1,3,11, 31)

=1

X, (@, N

=11

X, (@I, N

4

3.5

3+

2.5F

0
Frequency (cycles/sample)

0
Frequency (cycles/sample)

0.5

=3

X (@I, N

=31

X (@), N

4

3.5r

3+

2.5F

2+

1.5r

1F

0.5¢

0
Frequency (cycles/sample)

0
Frequency (cycles/sample)

l—ae—Jw

0.5



e example: z[n] = a"uln| where |a| < 1
- 1
X = 3o = b
(@) = Y (ae ) =
n=0
— x[n| is absolutely summable
— is X (w) continuous?
— is X (w) infintely differentiable?
— is X (w) periodic?
e point-wise convergence of partial sums (N =1,3,11,31)
‘ L] 1 ] I

DTFT example: absolutely summable signals

n

0 0 0
Frequency (cycles/sample) Frequency (cycles/sample) Frequency (cycles/sample)

0
Frequency (cycles/sample)

0.5



DTFT convergence: energy signals

oo
n=——oo

suppose x[n] is an energy signal, i.e. ) lz[n]|* < oo

the sequence of partial sums converges in the mean-square sense to X (w)

T

lim X (w) — Xn(w)]? dw =0

N —00 .

the interpretation is that the energy in the error tends to zero as N — o0
for energy signals X (w) has discontinuities

at points of discontinuity w, Xxn(w) converges to the average of the left-hand
and right-hand limits

for energy signals it is often very difficult to compute X (w) using the analysis
equation

investigate DTFT pairs using the synthesis equation



DTFT example: energy signals

. __ sinwgn
o example: z|n] = =%
— this is not absolutely summable
— this is an energy signal

— try to compute X (w) using the analysis equation
©.@)

X@)= 3 TN gon _ gy

™™
n=——00

e compute the inverse-DTFT of the rectangular function

]-7 ‘W‘SWOSTF

X(w) =
(@) 0, otherwise
1 [ . eJWOT _ e=IWON  gin won
x|n] = 2—/ e’ dw = > =2 forall n
T j2mn ™

e the inverse-DTFT (synthesis equation) was easy



DTFT example: energy signals

e example: z|n| = ke LN X(w) = _
™ 0, otherwise

17 |W‘§UJO§7T

e mean-square convergence of partial sums (N =1,3,11,31)

A /N ] A /\\//\
0.8 0.8
i it
4 06 4 06
g g
& 04 & 04r
0.2 0.2
O/ \ 0\\/ \/
-0.2 -0.2
-0.5 0 0.5 -0.5 0
Frequency (cycles/sample) Frequency (cycles/sample)
1F /\ VAN NIV YA\ /\ i 1+ N AAAAS AAAAA
\VARd ~ Vv EE TYYVN
0.8F 1 0.8r
- b=
T 0.6f % o6
z z
3 ©
= 04r ~=Zz 04r
< x
0.2 1 0.2
O\ N\ /\ /\ /\__/ 0 J\VAI\I\A AI\I\AVA
NN/ \/ \/ VYV VN v \VA A
-0.2 -0.2
-0.5 0 0.5 -0.5

0
Frequency (cycles/sample) Frequency (cycles/sample)



X(@), N=1

0.8

0.6

0.4r

0.21

DTFT example: energy signals

example:

]-7 ’W|§W0§7T

™ 0, otherwise

— x[n] is an energy signal

— is X (w) continuous?

— is X (w) infintely differentiable?

— is X (w) periodic?

— at points w of discontinuity, Xx(w) converges to average of left-hand and
right-hand limits

— the oscillatory behavior of X (w) near the discontinuity in X (w) is referred to
as the Gibbs phenomenon

| /NN ] | N\ /\

0.8 q 0.8 ) 0.8F

0.6 0.6 0.6

X(@), N=3
X(0), N=11
X (69, N=31

0.41 0.41 0.4r

0.21 1 0.21 1 0.2f

23,

0 0 . 0
Frequency (cycles/sample) Frequency (cycles/sample) Frequency (cycles/sample) Frequency (cycles/sample)



DTFT convergence: power signals

suppose x[n] is an power signal, i.e. limpy_, ﬁZfL_N lz[n]|? < oo

power signals do not have a DTFT

by allowing Dirac impulse, d(w), we can define DTFTs for some power signals:
periodic signals, unit step

for power signals X (w) can not be computed by direct application of the analysis
equation

investigate DTFT pairs using the synthesis equation



DTFT example: power signal

e compute the inverse-DTFT of

X(w) =27 i d(w — 27k)

k=—oc0

I . .
x[n]:%/ 27 Z O(w — 2mk)e? " dw

k=—o00

S

k=—o0

= / §(w)e? dw

—TT

= 0 = 1.

e we have derived the DTFT pair: z[n]=1 < X(w)=27) . __ 6(w—27k)



DTFT example: power signal

we can also derive the DTFT pair

z[n] =" & X(w) =27 Z O(w —wo — 2mk)

k=—o0

— z[n| is a power signal

— is X (w) continuous?

— is X (w) infintely differentiable?

— does X (w) have finite discontinuitites?
— X(w) has Dirac delta functions

— is X (w) periodic?



DTFT example: power signal

e the unit step function has the DTFT

=1

X (@], N

=11

X (@, N

un] © Ulw)=—— 4 f: 76(w + 27k)

1l —e v
k=—o0
40 40
35+ 1 35+
301 1 301
25r o 25F
%
20+ § 201
><Z
151 = 15r
101 1 101
5 5
0 0
-0.5 0 0.5 -0.5 0 0.5
Frequency (cycles/sample) Frequency (cycles/sample)
40 40
35+ 1 35+
301 1 301
25r TH? 25r
z
201 = 20r
)
z
15F = 15+
101 1 101
5 5
-0.5 0.5 -0.5 0.5

Frequency (cycles/sample) Frequency (cycles/sample)



DTFT convergence

x(n) X (w) Notes
Absolutely summable signals Uniform convergence Compute DTFT
directly
Z lz(n)| < oo Continuous X (w)

Differentiable X (w)

Energy signals Mean-square Verity DTFT by
convergence IDTFT

Z lz(n)]” < oo Jump discontinuities

Power signals May not converge in any  Verify DTFT by
sense IDTFT

lim 1 i\f: lz(n)|” < co Converges at  some

n=—N frequencies for periodic

signals

Converges at  some
frequencies for unit step
May include Dirac
Impulses




discrete-time Fourier series (DTFS)

e suppose x|n] is periodic with period N

N-1 - | Nl -
TRN — TRN
x|n| = Xpe N Xy = N g z[nle” ¥
k=0 n=0

e we'll have a lot more to say about the DTFS later when we talk about the
discrete Fourier transform (DFT)

e always converges (finite sum of finite numbers)



summary

Table 4.1 Summary of Fourier representation of signals.

Continuous - time signals Discrete - time signals
Time-domain Frequency-domain Time-domain Frequency-domain
x(1) c, x[n] c,
L AT A il i
55 T, T, t o+l o | - o ¥ n -N 0 N g
=] h Cr = i x(r)e_jkgo"dr ﬂ. Qo = 2_75 = I—Z x[n]e_Jg\Tb %
2 .E To I TO N n=0 I
'E = . kS0t = ik
I = 3 - o)W 1n
a = ﬂ x(1) k:Z_:ooCaE & x[n] g cke
Continuous and periodic Discrete and aperiodic Discrete and periodic Discrete and periodic
x(t) XG0 x{n] X(e')
5| E )i
st/ rL111011 0 ANV N4
‘@ E 0 t 0 Q -4 -2 0 2 4 n 2t - 0 @® 2n ®
5| 2| xio= [ wea ST XM= 3 ek DT
| n=—00
-E .& —0Q I
Sq E — L foo ] s — Jeoy o jen
< ﬁ EICTF-"I‘ x(f) = ) X(j©2) e *dQ ElDTFT x[n] 5 X(el el dw
Continuous and aperiodic Continous and aperiodic Discrete and aperiodic Continous and periodic

e discreteness in one domain leads to periodicity in the other domain

e periodicity in one domain leads to discreteness in the other domain




CTFS:

CTFT:

DTFT:

DTEFS:

Parseval relations

k=—o00

/OO (1) 2dt = /OO X(F)[2dF
o0 1/2

2dt = X(HI%d

3 e / I
N—1 N—1



z-transform and DTFT

e compare the z-transform and the DTFT

X(z) = Z x[nlz™"
X(w) = Z z[nle 7w

o we see that X (w) = X (2)|,__ju

e this requires that the region of convergence of X (z) include the unit circle in the
z-plane

e only the DTFTs of absolutely summable signals can be generated in this way

e this does not apply to energy signals or power signals



Imaginary Axis

114

S
n

|
S
L

|
[

10
X
o=0 &
2
W=T o=2n I
X
-1 =05 0 05 1

Real Axis

R S - =) T <)

/2

g A

3m/2

271



Table 4.3 Symmetry properties of the DTFT.

Sequence x[n] Transform X (ej“’)
Complex signals
x*[n] X* (e~ o)
x*[—n] X*(el?)
xR 1] Xe(@?) 2 § [ X(el®) 4+ X*(e739)|
jrln) Xo@?) 2 1 [X(e®) - X* (1)

xe[n] 2 J(xn] +x*[-n]) Xr(ei*)

xoln] £ J(x[n] — x*[-n])  jXi(e’®)

Any real x[n]

xe[n] = % (x{n] + x{—n])
Even part of x[n]

Xoln] = % (x[n] — x[—n])
Odd part of x[n]

Real signals

X(el?) = X*(e~1v)
XR(ejw) = XR(e_jw)
XI(ejw) = —X[(e_jw)
X(e¥)| = IX(e7I)|
/X(el?) = —/X (e I®)

XR (ejw)
real part of X(eJ®) (even)

ixi(e)
imaginary part of X(e!®) (odd)



DTFT is a 4-way transform

Table 4.2 Special cases of the DTFT for real signals.

Signal Fourier transform
Real and even real and even
Real and odd imaginary and odd

Imaginary and even  imaginary and even
Imaginary and odd real and odd

= z™(n) + ja'(n) + z™(n) + jz*°(n)

— Xré(w) + ]X";(w) + Xro(w) + ino(w)



