
A SUMMARY OF BASIC OPERATIONS IN MATLAB
Electrical and Computer Engineering Department

Todd K. Moon
Version: January 2014

Introduction

This document provides an introduction to familiarize you with MATLAB. MATLAB is a widely avail-
able computing environment that allows programming, editing, plotting, and data manipulation. MATLAB

provides excellent numeric capabilities. Symbolic processing is available as well. It is a full-blown com-
puter language provides substantial capabilities and has become a standard tool for algorithm development
in signal processing, controls, and many other areas of engineering.

This tutorial is merely an introduction MATLAB. While this will not cover all of the features of MATLAB

— a system so rich that it would take years to explore all of its possibilities — it provides a start so that you
can begin the exploration on your own. A very valuable life skill for an engineer is the ability to acquire
skill in new programming languages. This tutorial is written with this in mind.

In learning a new computer language, the most important thing is to use it. Play around with the
language to learn how it works. Ask questions of the computer, by typing things in to see if they work.
There are several built-in self-documentation features of the language that you should become familiar with.
An important command to know is the help command. For any MATLAB command, such as exp, you can
ask for information about it by typing

help exp

This provides a concise summary of the command. You can also get an HTML page of help using the doc
command, as in

doc exp

In the tutorial that follows, you should type all of the indicated MATLAB examples into MATLAB, and
make sure you can interpret and understand its results. There are also some exercises which you should do,
again making sure you understand the results.

If doing this tutorial for a class you be asked to save and turn in your work. To save your input/output
interaction to a file, the diary command can be used. To save your results into a file called filename,
use the command

diary filename

(You can learn more about this command with help diary.)

Entering Data as Scalars, Vectors, and Matrices

MATLAB is primarily centered around matrices and vectors. These are entered delimited with square
brackets. For example, to enter the vector

v = [1, 2, 3, 4]

you would type

v = [1,2,3,4]

or

1



v = [1 2 3 4]

That is, either commas or spaces can separate the elements. MATLAB distinguishes between column vectors
and row vectors. To type the column vector

v =


4
3
2
1


you would type

v = [1; 2; 3; 4]

or

v = [1
2
3
4]

Either the semicolon or a return separates rows.
In general, any time you want to see the value of a variable, simply type its name.
To access elements of a vector, the index of the element you want is placed between parentheses. So

v(1) is the first element of the array, v(2) is the last element. Conveniently, v(end) can be used to index
the last element, v(end-1) can be used to index the penultimate element, and so forth.

The matrix

m =

 1 2 3
6 5 2
7 5 3


may be typed in either by

m = [1 2 3; 6 5 2; 7 5 3]

or

m = [1 2 3
6 5 2
7 5 3]

That is, either semicolons or returns may separate rows of the matrix.
Elements of a matrix can be accessed using parentheses with two numbers, (row,column). So

m(1,1) accesses the first row and the first column (element 1 in this example), m(1,3) is the first row
third column (element 3 in this example. m(end,end) is 3.

The results of the most recent operation are displayed after you press Enter. If you do not want the
results displayed, you can terminate the line with a semicolon. For example,

j2 = [5 6 7 8];

assigns the vector of numbers to j2, but does not display the result, because the line is terminated with a
semicolon. For long computations, this can save a lot of screen space. You should also note that when
the results of a computation are not assigned to any variable, the result is automatically assigned to the
variable ans, which you can then use in the next computation. (Note that ans may be overwritten after any
computation, so you should be careful in its use.)

The transpose operator is the single quote ’. This converts column vectors to row vectors, and vice
versa. If you enter the matrix m from above

2



m = [1 2 3
6 5 2
7 5 3]

then you can determine the transpose as

m’

which produces

ans =
1 6 7
2 5 5
3 2 3

Efficient keyboard interaction

At this point you should have typed enough using MATLAB that you would appreciate some efficiencies
in the interaction. MATLAB allows you to use previously-typed results. This is helpful because often you
want to do something again, with only minor modifications.

When you type the up arrow key ↑, the last line you typed appears. As you keep typing the up arrow,
MATLAB will scroll through earlier lines. Once a line appears, you can move around within it using the
arrow keys to position the cursor, where you can edit the line.

If you type the first letter (or more letters) of previous lines, and then press the up arrow, MATLAB will
search through previously typed lines to find lines that match what you have typed in.

As you become familiar with these keyboard editing features, you will save a lot of time in interacting
with MATLAB.

We now return to our discussion of entering data in MATLAB.

The colon : operator

It is helpful sometimes to be able to deal with a whole range of elements in a vector or matrix at once.
Suppose you want to create a vector containing the numbers {0, 1, 2, . . . , 10}. You could either type

j = [1,2,3,4,5,6,7,8,9,10];

(tedious), or you could use the colon operator. The colon specified a range (begin):(end). This, you could
enter this range as

j = 1:10

Note that this makes a row vector. If you want to enter a column, you could use the transpose operator:

j = (1 : 10)′

Here, the ’ indicates the matrix transpose, which turns columns to rows and vice versa.
If you want to use non-integer steps, you can specify a range using the colon operator in the form (be-

gin):(step):(end). For example, the range 0:0.2:3 specifies a list starting at 0, ending at 3, and proceeding
in steps of 0.2:

j2 = 0:0.2:3

3



produces the row vector with values

0, 0.2, 0.4, 0.6, 0.8, 1, 1.2, 1.4, 1.6, 1.8, 2, 2.2, 2.4, 2.6, 2.8, 3.

Exercise 1 Study help colon.

You can use the colon operator to access a range of values. For example, if you type m(1,:), this
returns the entire first row of the matrix m. If you type m(:,1), this returns the entire first column. The
form m(1,1:2:end) returns every other element of the first row.

Exercise 2 Create a 6 × 6 matrix M of random numbers. Explore the following commands and make sure
you understand why it does what it does.

M(1:2:end,1)
M(2:2:end,2)
M(1:2:end,:)
M(1:2:end,1:2:end)
M(1:2:end,2:2:end)

Other ways of entering vectors and matrices

There are other helpful ways of entering vectors and matrices.

• The command zeros(m,n) produces a matrix with m rows and n columns of all zeros. This is often
a useful way of initializing a matrix or vector, or allocating space. For example,

z = zeros(3,4);

Exercise 3 Study help zeros

• The command ones(m,n) produces a matrix with m and n columns of all ones. This can be multi-
plied by a constant to set another value.

f = 7 * ones(5,6);

produces a 5× 6 matrix whose elements are all set to 7.

Exercise 4 Study help ones

• The command rand(m,n) produces a m × n matrix of independent random numbers, uniformly
drawn from [0, 1].

Exercise 5 Study help rand

• The command randn(m,n) produces a m×n matrix of independent random numbers, drawn from
a Gaussian (or normal) distribution with mean 0 and variance 1.

Exercise 6 Study help randn

4



MATLAB is as adept at complex number operations as it is at real number operations. Complex numbers
may be entered as 1-2i or 1-2j — either i or j may be used as

√
−1 in MATLAB. Here, i and j are

actually variables in MATLAB so you can assign them to other values. You should be careful to not assign
other values and then use them as if they were

√
−1. You can reset their default nature using one of the

following methods:

clear i j % clear assigned values (revert to default values)
i = sqrt(-1); % assign what you want.

Note that MATLAB has no trouble computing
√
−1.

In these examples, the text after the percent % is comments — used to explain to human readers what is
going on. The computer ignores the comments.

MATLAB has a variable with another useful value. The number π is represented using the variable pi.
If you type pi, MATLAB responds with

ans =
3.1416

While it is only showing only four decimal places of accuracy, internally numbers are represented with
double precision accuracy. If you want to show more decimal places of accuracy, use the command

format long

Note that pi, like i and j is a variable. You can overwrite its value with anything you like, such as

pi = 3; % probably not a good idea

Computations

Arithmetic operations on real or complex numbers are typed as is typical, as shown in the following
examples.

x = 3;
y = 7;
z1 = x*y; % multiplication
z2 = x/y; % division (real number)
z3 = x + y; % addition
z4 = mod(7,3); % 7 mod 3 (remainder)

r=3
vol = 4/3*pi*rˆ3; % pi is built-in

MATLAB can also perform computations on vectors and matrices as a whole, as shown in the following
examples.

v1 = [10 11 12 13];
v2 = [45 23 12 10];
vsum = v1 + v2; % add the vectors

vsum2 = 5 + v1; % add 5 to each element of v1
m = [1 2 3; 6 5 2; 7 5 3];
v3 = [20; 19; 18]; % a column vector
mv = m*v3; % matrix times vector
vm = v1*m; % vector times matrix

5



Mathematically, the operations of multiplication between the two row vectors v1 and v2 is not defined. But
it may be convenient to multiply element-by-element. This is done using the .* operator.

vprod = v1 .* v2 % element-by-element multiplication

The ˆ is the exponentiation operator. As applied to a scalar, it just computes a power:

j1 = 4;
e = 1/3;
j1sqrt = j1ˆe; % compute the cube root of j1

If you want to exponentiate each element of a vector, you should use the .ˆ operator, which applies the
operator to each element separately.

j1 = 1:5;
j2 = j1 .ˆ 2; % square each element of j1

Another example:

j3=1:5;
j4 = (3/2).ˆj; % raise 3/2 to a series of different powers

MATLAB also has a rich set of mathematical functions that apply their operation across all the elements.

x = 2;
y = sin(x); % compute the sin of a scalar
xv = [2:0.1:3]; % form a vector
yv = sin(xv); % compute the sign of each element of xv
zv = exp(xv); % compute exp of each element of xv
lv = log(xv); % compute the log of each element of xv

Operations on matrices are very easy to do, since this forms the heart of MATLAB. The following
exercises introduce some basic operations:

Exercise 7 Enter the following matrix (see page 1):

m =

 1 2 3
6 5 2
7 5 3


Find the eigenvalues and eigenvectors of m. (Study help eig.) Make sure you know which are eigenval-
ues and which are eigenvectors.

Exercise 8 Find the determinant and inverse of m. (study det, inv)

Exercise 9 Solve the set of equations 1 2 3
6 5 2
7 5 3

 x1
x2
x3

 =

 4
2
1


by entering

b = [4;2;1]
x = m\b

6



(See the operations \ and / under help slash.)

Exercise 10 Compute
−
√
16− 4

2e4 + 1

by entering

e = exp(1)
(-sqrt(16)-4)/(2*eˆ4 + 1)

Note that e (the base of natural logarithms) is not a built-in number.

MATLAB also has some convenient functions for dealing with vectors. The sum command sums all of
the elements in a vector.

Exercise 11 Compute
∑20

k=1 k
2. Enter

k=(1:20)’
k = k.ˆ2
sum(k)

Related useful commands are prod, cumsum, and diff. Take a look at these.

Making plots

MATLAB has excellent plotting capability — perhaps the best of any computational tool around. In this
exercise you will meet only the barest essentials of the plotting capability. For more information, see the
help on the computer or the online manual.

Exercise 12 Study help plot

Here are some examples:

• Plot sin(2πj/50) (on the x-axis) versus cos(6πj/50) (on the y-axis) for j = 1..51:

j=(1:51); % make the index list
x = sin(2*pi*j/50); % x values
y = cos(6*pi*j/50); % y values
plot(x,y) % plot x vs. y

Note that the statement x = sin(2*pi*j/50) produces an array at the output, with each compo-
nent in the output array coming from a component in the input array.

• Plot j = 1..51 (on the x-axis) versus sin(2πj/50) (on the y-axis):

plot(j,x)

• Frequently, it is important to plot more than one graph on a single pair of axes. This can be done at
least two ways.

In the first way, you simply provide a list of all the x, y data sets in a list.

Plot the functions y = x2 for −2 ≤ x ≤ x. Also, on the same axes, plot the function z = x3 for
−3 ≤ x ≤ x:

7



x1 = -2:.01:2; % set up the x range for the first plot; use .01 spacing
y = x1.ˆ2; % set up the function y = xˆ2
x2 = -3:.01:3; % set up x range for second plot
z = x2.ˆ3; % set up the function z = xˆ3
plot(x1,y,x2,z); % plot both sets of data simultaneously

If you want to control the plot color, marker, or the line style you can, specifying each individually.
The colors are specified using letters. The following comes from help plot.

COLORS MARKERS LINE STYLES
b blue . point - solid
g green o circle : dotted
r red x x-mark -. dashdot
c cyan + plus -- dashed
m magenta * star
y yellow s square
k black d diamond

v triangle (down)
ˆ triangle (up)
< triangle (left)
> triangle (right)
p pentagram
h hexagram

For example, redo the last plot, plotting the first line using a red dotted line, and the second line using
a cyan dashed line:

plot(x1,y,’r:’,x2,z,’c--’); % ’r:’ means red dotted.
% ’c--’ means cyan dashed

• Typically, every time you make a plot, MATLAB erases the old plot and puts on the new plot. However,
you can tell MATLAB to hold the plot, so that new information can be overlaid, using the hold
command. This provides another way to put more than one graph on a plot.

Exercise 13 Study help hold

To make the hold go away, you can use the command hold off. To turn the hold on, use hold
on. To clear a graph, use clf.

Repeat the previous plot, but put the plots on one at a time:

clf; % clear the previous plot
plot(x1,y,’r:’); % plot the first function
hold on; % turn on the hold
plot(x2,z,’c--’); % plot the second function. They should both be there.

• Frequently it is useful to put more than one plot together. This can be done using the subplot
command.

Exercise 14 Study help subplot

8



You invoke subplot with 3 arguments. The first two tell how many rows and columns of plots you
want. The third column tells which subplot to plot into, numbered in row-dominant order.

• Plot the two functions into two separate plots, but in the same window:

clf; % clear previous plot, if any
subplot(2,1,1); % tell it you want 2 rows, 1 column, and the 1st plot
plot(x1,y,’r:’); % plot the first function
subplot(2,1,2); % tell it you want 2 rows, 1 column and the 2nd plot
plot(x2,z,’c--’); % plot the second function

• You may want to have several plots on the screen at a time. This is done with the figure command.

You should know that it is possible to change just about everything in the plot. Several commands control
the plots, or do plots of different kinds. These are explored in the following exercises.

Exercise 15 Study help xlabel (set the x-axis label on the plot)

Exercise 16 Study help ylabel (set the y-axis label on the plot)

Exercise 17 Study help title (set the title at the top of the plot)

Exercise 18 Study help stem (make a “stem” plot, which plots discrete time functions

Exercise 19 Study help semilogy (make a logarithmic plot on the y axis)

Exercise 20 Study help semilogx (make a logarithmic plot on the x axis)

Exercise 21 Study help loglog (make a log log plot)

Exercise 22 Study help text (put some text on a plot)

You should also play around with the icons on the plot screen. It is possible to zoom in on a plot and
move around with the plot.

Exercise 23 Study print (save a plot to a file)

Getting help

MATLAB has an extensive help system built in. First, as seen many times in this document, there is the
help command. For any of the commands, you may simply type help commandname. For example,
type help eig to learn about how to compute eigenvectors and eigenvalues in MATLAB. You can even
type help help to learn more about help. There is also an online manual. To access this, use the Help
menu at the top of the MATLAB menu.

You can learn what variables MATLAB has currently defined using the who command. If you want a
more detailed list, including sizes of array variables and their types, use the whos command.

MATLAB is so extensive that there is reason to hope that just about any function you might want has
probably already been implemented. But how to find it? MATLAB provides the lookfor command. This
command searches through the MATLAB program files for all of the commands, looking at the comments in
the program for a match.

9



Exercise 24 You are looking for a way to compute the binomial coefficient(n
k

)
You assume that MATLAB would have an implementation. See if you can find it using lookfor binomial.

As you are learning the language, you may find lookfor to be most powerful ally.
It may happen that you locate a function, and desire to know what directory it comes from. This can be

found using help which.
The doc facility in MATLAB provides many, many pages of tutorial and example. Simply type

doc

It will bring up a menu. If you want to learn more about MATLAB itself, click under the MATLAB menu
option, and go at it. You may enjoy examples of plotting, or examples of programming.

There are very many websites which provide MATLAB tutorials. Here are some places to start:

Writing programs in MATLAB

Besides a calculator of considerable value and elegance, MATLAB is also a programming language, with
(almost) all of the programming constructs your heart could desire, such as if-else, for, while. If you
have experience programming another language, you will find you can readily adapt to MATLAB’s logical
syntax.

The following is a simple recursive function that computes the factorial of a function

function f = fact(n)
% compute the factorial of a number recursively

if n==1
f = 1;

else
f = n*fact(n-1);

end

In this, you’ll notice that a function is defined using the MATLAB keyword function. The first line

function f = fact(n)

creates a function called fact. It accepts a single argument called n, and has a single return value called f.
After the function definition line, there is a comment that describes what the function does,

% compute the factorial of a number recursively

It is a highly recommended practice to put such a comment in. Not only does it help the reader understand
what the program does, but it is this comment that is used by the help command.

To create this function, you would use a text editor to type the function in, in the directory where you
are working.

Exercise 25

1. Enter the program into a file using your favorite text editor. If you do not have have a text editor you
call your own, you can always use MATLAB’s built-in editor. You can do this by

10



edit fact.m

This brings up an editor in its own window.

Save the file into a file called fact.m in a directory. The name of the file is important – the name of
the file should match the name of the function, and the filename should have the extension .m.

(If you use MATLAB’s editor, the default save directory will be the directory MATLAB is currently
operating from.)

2. Make sure the file is in your MATLAB path (see help path), or in the directory that MATLAB is
currently operating in. (You can find the current directory MATLAB is working in with the command
pwd.

3. Compute the factorial of various numbers such as 4,5, and 10:

fact(4)
fact(5)
fact(10)

4. Study help if

The factorial program could also be written using a for loop.

function f = fact2(n)
% return the factorial of a number using a for loop

f = 1;
for i=1:n

f = i*f;
end;

The operation of this function may be easier to understand than the recursive function above.
The key operation here is the for statement. As in many other languages, the for statement succes-

sively assigns the variable 1, then 2, etc., up to 10. That is, it is as if we typed

f = 1;
i = 1; f = i*f;
i = 2; f = i*f;
i = 3; f = i*f;
...
i = 10; f = i*f;

The beauty of this, of course, is that you don’t have to type a whole bunch of lines over and over. And you
can change a variable, and change the number of times the line is repeated.

Exercise 26

1. Type this program using a text editor and save it in a file called fact2.m.

2. Test its operation on some numbers.

3. Study help for.

11



4. Another statement used for iteration is the while command. Study help while. (For those familiar
with other programming languages, it might be interesting to note that there is nothing analogous to
the do/while statement in MATLAB.

Exercise 27 Write a program to convert a base-10 number to binary. Return the binary number in an array.
Call your function dec2bin. Thus, if you were to invoke

bina = dec2bin(37)

then bina should be bina = [1 0 0 1 0 1] (the LSB is on the right).
The following MATLAB operations may be useful to you: rem, floor, for.
Test your function on a variety of numbers.

Moving on

MATLAB has a huge variety of tools that are useful for engineers. We touch on a few here.
MATLAB can also solve for roots of polynomials. Enter the polynomial coefficients into a vector, then

use the roots function. For example, to find the roots of

x3 − 10x+ 2,

form the vector

v = [1,0,-10,2]

(note that the coefficients go in decreasing powers of x, and that all coefficients, even if zero, must be
included). Then use the function roots(v).

rts = roots(v);

MATLAB also has a function that goes from the roots of a polynomial back to the polynomial. The function
is called poly.

v1 = poly(rts)

This representation of the polynomial is (or should be very close to) the same as the original vector v.
MATLAB can also do numerical integration. For example, to compute∫ 5

0
sin(t)dt,

enter

quad(’sin’,0,5)

The command quad is short for quadrature, which is the numerical analyst’s word for integration.

Exercise 28 Study help quad

Due to the way the quad function is set up, the integrand must be a function that returns a vector
of values for a vector of inputs. Practically what this means is that for most interesting problems you would
have to create your own function. Thus, to integrate∫ 1

0
t sin(2πt)dt

you would have to create your own function to compute t sin(2πt). This is not hard, but would take us too
far afield on this introduction.

12



Symbolic computations

You may have noticed by now that all the computations return numbers as their answers. Numbers are
good, but they are not all there is to mathematics. You calculators could have done as well. Symbolic
operations may also be done, however, using MATLAB. You can learn about symbolic functions by typing
help symbolic, and by reading the online manual.

To get started, you need to tell MATLAB which variables are to be considered as “symbolic,” that is, not
taking on numeric values. This is done with the syms command. For example, to make the variables n and
k be symbolic, use

syms k n;

1. To compute
n∑

k=1

k2

enter

syms k n;
s1 = symsum(kˆ2,k,0,n);

Now factor the result to put it in more conventional form

s2 = expand(s1)

(You may also find the factor command useful.) Now to find a particular numeric value, substitute
a number in place of n.

subs(s2,n,20)

Compare this result with the one obtained numerically previously.

Others symbolic operations that may be of interest are simplify, factor, expand, collect,
simple, numden, subs, solve, fourier, laplace, ztrans, diff, int. You
can use the help function to learn more about these.

2. To compute the integral ∫ T

0
t cos(2πnt)dt

enter

syms t T n;
i1 = int(t*cos(2*pi*n*t),t,0,T)

This may be simplified by using

simple(i1)

Verify by integrating by hand the MATLAB has done its job correctly.

13



3. Try a derivative. To take the derivative of

e =
2x2 − 3x+ 1

x3 + 2x2 − 9x− 18

enter

syms e x;
e = (2*xˆ2 -3*x +1)/(xˆ3 + 2*xˆ2 - 9*x -18)
de = diff(e,x)

You might also want to simplify the result by entering

simplify(de)

Verify by doing the derivative by hand that MATLAB is doing it right.

4. To enter the matrix

m =

 d2 2 7
d d3 9
1 5 1

d


you enter

syms d m;
m = sym([dˆ2 2 7; d dˆ3 9; 1 5 1/d])

5. To take the determinant, enter

det(m)

6. To take the inverse of a symbolic matrix,

inv(m)

Another operation that will become important to us when we study Laplace transforms is partial fraction
expansions (PFE), which you should have studied in Calculus. There are two ways of accomplishing this in
MATLAB. The first is by using the residue command.

1. Let

f(x) =
2x2 − 3x+ 1

x3 + 2x2 − 9x− 18

This may be represented by creating two vectors in MATLAB, with one vector representing the nu-
merator polynomial and the other vector representing the denominator polynomial:

a = [1 2 -9 -18] % denominator polynomial
b = [2 -3 1] % numerator polynomial

Then the partial fraction expansion

b(s)

a(s)
=

r1
s− p1

+
r2

s− p2
+ . . .+

rn
s− pn

may be obtained using

14



[r,p] = residue(b,a)

Try this using the expression above. Verify by hand computation that the partial fraction works as
expected. Also, check the details on the command using help residue.

2. The other way to do partial fraction expansion is using the symbolic toolbox. There is no single
function to do this (but you could write one!), but you could obtain the same effect by first integrating,
then differentiating the function. (This works because MATLAB integrates the expression the way you
would if you did it by hand: if first forms a partial fraction expansion, then integrates term-by-term.
If you turn around and take the derivative, then you end up with the partial fraction expansion.) Enter
the following:

syms x;
f = (2*xˆ2 - 3*x + 1)/(xˆ3 + 2*xˆ2 - 9*x - 18);
pfe = diff(int(f))

Verify that this gives the partial fraction expansion correctly. You can turn around and undo the partial
fraction expansion by

simplify(pfe)

3. MATLAB is able to handle partial fraction expansions even with non-integer coefficients. Do a partial
fraction expansion on the following expression using both numeric and symbolic techniques.

2x2 − 3x+ 1

x3 + 2x2 − 9.4x− 18

Even though MATLAB has symbolic capability, you should be aware that many of the kinds of operations
you need to do on polynomials may be done using some of MATLAB’s numeric commands. Explore the
following commands:

1. conv (multiply two polynomials).

2. deconv (divide two polynomials).

You should also explore the use of the solve function.

A few more things

This tutorial only provides a start. There are many other things that it may be helpful to know about.
Knowing that these things exist, you can start looking and learning for yourself.

• MATLAB can not only deal with numbers, but it can deal with strings (letters and characters).

• All the rows of a matrix must be the same length. Sometimes it is helpful to have data structures that
can deal with different lengths. One way to do this is using cells.

• MATLAB has structures analogous to structures in languages like C or C++.

• MATLAB can also be used for object oriented programming.

• MATLAB can make nice-looking 3D plots (help plot3, help surf, help surf).

15



• MATLAB can be used to build graphical user interfaces (GUIs), with slider bars, check boxes, and all
the rest. See the doc.

• MATLAB has a built in debugger: you can set breakpoints, single step into or over functions, print
variables, move around in the stack, and other things. Start with help debug.

• There is a MATLAB mode for emacs.

• Mathworks, MATLAB’s producer, has a website where user contributed programs are archived.

16


