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Hilbert transform

the Hilbert transform is a filtering operation that consists of two filters
the input z(n) may be real or complex

the output y(n) is always complex

h(n) is the Hilbert filter

d(n) is a delay (all-pass) filter (same group delay as Hilbert filter)

(see block diagram on the next page)



Hilbert transform block diagram
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Hilbert transform

y+(n) = [d(n) + jh(n)] * z(n) = [d(n) *x x(n)] + j [z(n) * h(n)]
y—(n) = [d(n) — jh(n)] x x(n) = [d(n) x z(n)] — j[x(n) * h(n)]

e a complex signal is really two real signals, i.e. a two channel signal

e (see filter impulse responses and frequency responses on the next few slides)



filter impulse responses

Sample Index

Hilbert Filter

e Hilbert filter has odd length, odd symmetry about midpoint

e delay filter impulse located at symmetry point (zero crossing) of Hilbert filter



Delay Filter

Hilbert Filter

filter magnitude responses
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Hilbert magnitude responses
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action of Hilbert transform

e |d(n) + jh(n)]

— pass positive frequency components
— set negative frequency components to zero

e |d(n) — jh(n)]

— pass negative frequency components
— set positive frequency components to zero

e practical Hilbert transformers have transition bands



design Hilbert transform in Matlab

= 321;
firpm(len-1,[0.005 0.995],[1 1], ); h = h(:);
zeros (len,1); d((len+1)/2) = 1;




applications of Hilbert transform

radio receivers

radar receivers

single sideband modulation

medical instruments (MRI, ultrasound, etc.)

audio effects (pitch shifting)

signal analysis

if x(n) = cos(wn), then y(n) = cos(wn) £ jsin(wn) = exp(+jwn)
if x(n) = A(n)cosp(n), then y(n) = A(n)exp(jo(n))

Hilbert transform enables decomposition of the input signal into its envelope
A(n) and phase ¢(n)

given the phase ¢(n), the instantaneous frequency can be computed by
differentiation

1 do(t)

_ s
2w dt

27

fi(t) = > filn) = ==[p(n) —p(n —1)]



extracting envelope and phase

. given xz(n), compute the Hilbert transform y(n)

. the envelope A(n) is the magnitude of y(n)

A(n) = v (R{y(n)})? + (3{y(n)})?

. the phase ¢(n) is the unwrapped phase of y(n)

_1 S{y(n)}
R{y(n)}

©(n) = tan (4-quadrant arc-tangent, atan2 in C)

. the instantaneous frequency is f;(n) = —(p(n) — p(n — 1)) (Fs/2m) [Hz]

the phase is unwrapped and instantaneous frequency computed by:

a s WN -

pz
fi
if

atan2(yi,yr); // Compute the phase (four-quadrant arc-tangent)
-(pz-pzold); // Compute the phase difference (derivative approx.)
(fi > M_PI) { fi -= 2.0*xM_PI; } // Phase unwrap

else if(fi < -M_PI) { fi += 2.0%M_PI; } // Phase unwrap
pzold = pz; // Save phase for next iteration




6. re-synthesize the signal by:

z(n) = cos(p(n))

1 x

cos(pz);




assignment

e the file to be processed is fireflyintro.wav

e design an odd length Hilbert filter and save it to a binary file (or use hilbert_
filter.bin)

e write a C program to:

— compute the real and imaginary components of the Hilbert transform of the
input (do this by modifying the filtering program that you wrote previously)

— use the atan2 function to compute the phase of the Hilbert transformed signal

— unwrap the phase

— compute the instantaneous frequency

— filter the instantaneous frequency through a 301-point normalized Gaussian
filter (parameter = 2), see file gaussian_2_filter.bin

— save the filtered instantaneous frequency

e make a spectrogram of the original signal (Ngrr = 2!2, Hamming window, 90%
overlap)

e overlay the filtered instantaneous frequency over the top of the spectrogram



describe the relationship between the instantaneous frequency and the
spectrogram

plot the magnitude and phase response for the Hilbert filter h(n) and the delay
filter d(n)

plot the magnitude and phase of the Hilbert transformer d(n) + jh(n)

describe in words the action of the Hilbert transformer based on the frequency
response

plot the magnitude and phase of the cascade combination of the 1st-order
difference filter and the Gaussian filter



processing diagram
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linear time invariant systems and their impulse responses

— delay: d(n — nyg)

— Hilbert filter: h(n)

— 1st-difference (derivative approximation): d(n) —d(n — 1)

— Gaussian filter: normalized Gaussian function
(w=gausswin(301,2); w=w/sum(w); in Matlab)

other operations

— calculate phase (four-quadrant arc-tangent): atan?2
— phase unwrapping



instantaneous frequency - linear scale - notes in red
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instantaneous frequency - log scale - notes in red
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