# ECE 3640 - Discrete-Time Signals and Systems Hilbert Transform

Jake Gunther

Spring 2015



## Department of Electrical & Computer Engineering

## outline

- Hilbert transform
- envelope and phase
- phase unwrapping
- instantaneous frequency
- assignment

## Hilbert transform

- the Hilbert transform is a filtering operation that consists of two filters
- the input x(n) may be real or complex
- the output y(n) is always complex
- h(n) is the Hilbert filter
- d(n) is a delay (all-pass) filter (same group delay as Hilbert filter)
- (see block diagram on the next page)

#### Hilbert transform block diagram



$$y_{+}(n) = [d(n) + jh(n)] * x(n) = [d(n) * x(n)] + j [x(n) * h(n)]$$
$$y_{-}(n) = [d(n) - jh(n)] * x(n) = [d(n) * x(n)] - j [x(n) * h(n)]$$

- a complex signal is really two real signals, i.e. a two channel signal
- (see filter impulse responses and frequency responses on the next few slides)

#### filter impulse responses



- Hilbert filter has odd length, odd symmetry about midpoint
- delay filter impulse located at symmetry point (zero crossing) of Hilbert filter

#### filter magnitude responses



#### filter magnitude responses in dB



#### Hilbert magnitude responses



#### Hilbert magnitude responses in dB



#### ideal Hilbert magnitude responses



## action of Hilbert transform

- [d(n) + jh(n)]
  - pass positive frequency components
  - set negative frequency components to zero
- [d(n) jh(n)]
  - pass negative frequency components
  - set positive frequency components to zero
- practical Hilbert transformers have transition bands

#### design Hilbert transform in Matlab

```
1 len = 321;
2 h = firpm(len-1,[0.005 0.995],[1 1],'Hilbert'); h = h(:);
3 d = zeros(len,1); d((len+1)/2) = 1;
```

## applications of Hilbert transform

- radio receivers
- radar receivers
- single sideband modulation
- medical instruments (MRI, ultrasound, etc.)
- audio effects (pitch shifting)
- signal analysis
- if  $x(n) = \cos(\omega n)$ , then  $y(n) = \cos(\omega n) \pm j \sin(\omega n) = \exp(\pm j \omega n)$
- if  $x(n) = A(n) \cos \varphi(n)$ , then  $y(n) = A(n) \exp(j\varphi(n))$
- $\bullet$  Hilbert transform enables decomposition of the input signal into its envelope A(n) and phase  $\varphi(n)$
- $\bullet$  given the phase  $\varphi(n),$  the instantaneous frequency can be computed by differentiation

$$f_i(t) = -\frac{1}{2\pi} \frac{d\varphi(t)}{dt} \quad \longleftrightarrow \quad f_i(n) \approx -\frac{f_s}{2\pi} [\varphi(n) - \varphi(n-1)]$$

#### extracting envelope and phase

- 1. given x(n), compute the Hilbert transform y(n)
- 2. the envelope A(n) is the magnitude of y(n)

$$A(n) = \sqrt{(\Re\{y(n)\})^2 + (\Im\{y(n)\})^2}$$

3. the phase  $\varphi(n)$  is the unwrapped phase of y(n)

$$\varphi(n) = \tan^{-1} \frac{\Im\{y(n)\}}{\Re\{y(n)\}},$$
 (4-quadrant arc-tangent, atan2 in C)

- 4. the instantaneous frequency is  $f_i(n) = -(\varphi(n) \varphi(n-1))(F_s/2\pi)$  [Hz]
- 5. the phase is unwrapped and instantaneous frequency computed by:

| 1 | pz = atan2  | 2(yi,yr); // Compute the phase (four-quadrant arc-tangent)               |
|---|-------------|--------------------------------------------------------------------------|
| 2 | fi = -(pz - | <pre>-pzold); // Compute the phase difference (derivative approx.)</pre> |
| 3 | if (fi      | <pre>&gt; M_PI) { fi -= 2.0*M_PI; } // Phase unwrap</pre>                |
| 4 | else if(fi  | <pre>-M_PI) { fi += 2.0*M_PI; } // Phase unwrap</pre>                    |
| 5 | pzold = pz  | ; // Save phase for next iteration                                       |

6. re-synthesize the signal by:

$$x(n) = \cos(\varphi(n))$$

1 x = cos(pz);

#### assignment

- the file to be processed is fireflyintro.wav
- design an odd length Hilbert filter and save it to a binary file (or use hilbert\_ filter.bin)
- write a C program to:
  - compute the real and imaginary components of the Hilbert transform of the input (do this by modifying the filtering program that you wrote previously)
  - use the atan2 function to compute the phase of the Hilbert transformed signal
  - unwrap the phase
  - compute the instantaneous frequency
  - filter the instantaneous frequency through a 301-point normalized Gaussian filter (parameter = 2), see file gaussian\_2\_filter.bin
  - save the filtered instantaneous frequency
- make a spectrogram of the original signal ( $N_{\text{FFT}} = 2^{12}$ , Hamming window, 90% overlap)
- overlay the filtered instantaneous frequency over the top of the spectrogram

- describe the relationship between the instantaneous frequency and the spectrogram
- plot the magnitude and phase response for the Hilbert filter h(n) and the delay filter d(n)
- plot the magnitude and phase of the Hilbert transformer d(n) + jh(n)
- describe in words the action of the Hilbert transformer based on the frequency response
- plot the magnitude and phase of the cascade combination of the 1st-order difference filter and the Gaussian filter

## processing diagram



- linear time invariant systems and their impulse responses
  - delay:  $\delta(n-n_0)$
  - Hilbert filter: h(n)
  - 1st-difference (derivative approximation):  $\delta(n) \delta(n-1)$
  - Gaussian filter: normalized Gaussian function
     (w=gausswin(301,2); w=w/sum(w); in Matlab)
- other operations
  - calculate phase (four-quadrant arc-tangent): atan2
  - phase unwrapping

## instantaneous frequency - linear scale - notes in red



#### instantaneous frequency - log scale - notes in red

